Patents by Inventor Paul E. Ellis, Jr.

Paul E. Ellis, Jr. has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220274093
    Abstract: A precursor mixture for producing a porous body, wherein the precursor mixture comprises: (i) at least one milled alpha alumina powder having a particle size of 0.1 to 6 microns, (ii) non-silicate powder that functions as a binder of the alpha alumina powders, and (iii) at least one burnout material having a particle size of 1-10 microns and a decomposition temperature of less than 550° C., with the proviso that a burnout material having a decomposition temperature of 550° C. or greater is excluded from the precursor mixture.
    Type: Application
    Filed: May 16, 2022
    Publication date: September 1, 2022
    Applicant: Scientific Design Company, Inc.
    Inventors: Wojciech L. Suchanek, Paul E. Ellis, JR., Michael Di Mare, Jean Adam
  • Patent number: 11331652
    Abstract: A precursor mixture for producing a porous body, wherein the precursor mixture comprises: (i) at least one milled alpha alumina powder having a particle size of 0.1 to 6 microns, (ii) non-silicate powder that functions as a binder of the alpha alumina powders, and (iii) at least one burnout material having a particle size of 1-10 microns and a decomposition temperature of less than 550° C., with the proviso that a burnout material having a decomposition temperature of 550° C. or greater is excluded from the precursor mixture.
    Type: Grant
    Filed: December 7, 2017
    Date of Patent: May 17, 2022
    Assignee: Scientific Design Company, Inc.
    Inventors: Wojciech L. Suchanek, Paul E. Ellis, Jr., Michael Di Mare, Jean Adam
  • Patent number: 10449520
    Abstract: A porous body with enhanced fluid transport properties and crush strength is provided. The porous body includes the porous body includes at least 80 percent alpha alumina and having a pore volume from 0.3 mL/g to 1.2 mL/g, a surface area from 0.3 m2/g to 3.0 m2/g, and a pore architecture that provides at least one of a tortuosity of 7 or less, a constriction of 4 or less and a permeability of 30 mdarcys or greater, wherein the porous body is a cylinder comprising at least two spaced apart holes that extend through an entire length of the cylinder. The porous body has a flat plate crush strength improved by more than 10% over a porous body cylinder having a same outer diameter and length, but having only a single hole.
    Type: Grant
    Filed: December 7, 2017
    Date of Patent: October 22, 2019
    Assignee: Scientific Design Company, Inc.
    Inventors: Wojciech L. Suchanek, Michael Di Mare, Jean Adam, Paul E. Ellis, Jr.
  • Publication number: 20180326403
    Abstract: A porous body with enhanced fluid transport properties and crush strength is provided. The porous body includes the porous body includes at least 80 percent alpha alumina and having a pore volume from 0.3 mL/g to 1.2 mL/g, a surface area from 0.3 m2/g to 3.0 m2/g, and a pore architecture that provides at least one of a tortuosity of 7 or less, a constriction of 4 or less and a permeability of 30 mdarcys or greater, wherein the porous body is a cylinder comprising at least two spaced apart holes that extend through an entire length of the cylinder. The porous body has a flat plate crush strength improved by more than 10% over a porous body cylinder having a same outer diameter and length, but having only a single hole.
    Type: Application
    Filed: December 7, 2017
    Publication date: November 15, 2018
    Applicant: Scientific Design Company, Inc.
    Inventors: Wojciech L. Suchanek, Michael Di Mare, Jean Adam, Paul E. Ellis, JR.
  • Publication number: 20180326402
    Abstract: A precursor mixture for producing a porous body, wherein the precursor mixture comprises: (i) at least one milled alpha alumina powder having a particle size of 0.1 to 6 microns, (ii) non-silicate powder that functions as a binder of the alpha alumina powders, and (iii) at least one burnout material having a particle size of 1-10 microns and a decomposition temperature of less than 550° C., with the proviso that a burnout material having a decomposition temperature of 550° C. or greater is excluded from the precursor mixture.
    Type: Application
    Filed: December 7, 2017
    Publication date: November 15, 2018
    Applicant: Scientific Design Company, Inc.
    Inventors: Wojciech L. Suchanek, Paul E. Ellis, JR., Michael Di Mare, Jean Adam
  • Patent number: 7504357
    Abstract: A catalyst composition having the formula: Mo1VaSbbNbcMdOx wherein M is gallium, bismuth, silver or gold, a is 0.01 to 1, b is 0.01 to 1, c is 0.01 to 1, d is 0.01 to 1 and x is determined by the valence requirements of the other components. Other metals, such as tantalum, titanium, aluminum, zirconium, chromium, manganese, iron, ruthenium, cobalt, rhodium, nickel, platinum, boron, arsenic, lithium, sodium, potassium, rubidium, calcium, beryllium, magnesium, cerium, strontium, hafnium, phosphorus, europium, gadolinium, dysprosium, holmium, erbium, thulium, terbium, ytterbium, lutetium, lanthanum, scandium, palladium, praseodymium, neodymium, yttrium, thorium, tungsten, cesium, zinc, tin, germanium, silicon, lead, barium or thallium may also be components of the catalyst. This catalyst is prepared by co-precipitation of metal compounds which are calcined to form a mixed metal oxide catalyst that can be used for the selective conversion of an alkane to an unsaturated carboxylic acid in a one-step process.
    Type: Grant
    Filed: May 24, 2007
    Date of Patent: March 17, 2009
    Assignee: Saudi Basic Industries Corporation
    Inventors: Paulette N. Hazin, Paul E. Ellis, Jr.
  • Patent number: 7345199
    Abstract: A catalyst composition having the formula: Mo1VaSbbNbcMdOx wherein M is gallium, bismuth, silver or gold, a is 0.01 to 1, b is 0.01 to 1, c is 0.01 to 1, d is 0.01 to 1 and x is determined by the valence requirements of the other components. Other metals, such as tantalum, titanium, aluminum, zirconium, chromium, manganese, iron, ruthenium, cobalt, rhodium, nickel, platinum, boron, arsenic, lithium, sodium, potassium, rubidium, calcium, beryllium, magnesium, cerium, strontium, hafnium, phosphorus, europium, gadolinium, dysprosium, holmium, erbium, thulium, terbium, ytterbium, lutetium, lanthanum, scandium, palladium, praseodymium, neodymium, yttrium, thorium, tungsten, cesium, zinc, tin, germanium, silicon, lead, barium or thallium may also be components of the catalyst. This catalyst is prepared by co-precipitation of metal compounds which are calcined to form a mixed metal oxide catalyst that can be used for the selective conversion of an alkane to an unsaturated carboxylic acid in a one-step process.
    Type: Grant
    Filed: May 24, 2007
    Date of Patent: March 18, 2008
    Assignee: Saudi Basic Industries Corporation
    Inventors: Paulette N. Hazin, Paul E. Ellis, Jr.
  • Patent number: 7229946
    Abstract: A catalyst composition having the formula: Mo1VaSbbNbcMdOx wherein M is gallium, bismuth, silver or gold, a is 0.01 to 1, b is 0.01 to 1, c is 0.01 to 1, d is 0.01 to 1 and x is determined by the valence requirements of the other components. Other metals, such as tantalum, titanium, aluminum, zirconium, chromium, manganese, iron, ruthenium, cobalt, rhodium, nickel, platinum, boron, arsenic, lithium, sodium, potassium, rubidium, calcium, beryllium, magnesium, cerium, strontium, hafnium, phosphorus, europium, gadolinium, dysprosium, holmium, erbium, thulium, terbium, ytterbium, lutetium, lanthanum, scandium, palladium, praseodymium, neodymium, yttrium, thorium, tungsten, cesium, zinc, tin, germanium, silicon, lead, barium or thallium may also be components of the catalyst. This catalyst is prepared by co-precipitation of metal compounds which are calcined to form a mixed metal oxide catalyst that can be used for the selective conversion of an alkane to an unsaturated carboxylic acid in a one-step process.
    Type: Grant
    Filed: March 23, 2004
    Date of Patent: June 12, 2007
    Assignee: Saudi Basic Industries Corporation
    Inventors: Paulette N. Hazin, Paul E. Ellis, Jr.
  • Patent number: 6919472
    Abstract: A catalyst composition for the selective conversion of an alkane to an unsaturated carboxylic acid having the general formula: MoVaNbbAgcMdOx wherein optional element M may be one or more selected from aluminum, copper, lithium, sodium, potassium, rubidium, cesium, gallium, phosphorus, iron, rhenium, cobalt, chromium, manganese, arsenic, indium, thallium, bismuth, germanium, tin, cerium or lanthanum; a is 0.05 to 0.99, b is 0.01 to 0.99, c is 0.01 to 0.99, d is 0 to 0.5 and x is determined by the valence requirements of the other components of the catalyst composition. This catalyst is prepared by co-precipitation of compounds of molybdenum, vanadium, niobium, silver and M to form a mixed metal oxide catalyst. This catalyst can be used for the selective conversion of an alkane to an unsaturated carboxylic acid in a one-step process or the ammoxidation of alkanes and olefins.
    Type: Grant
    Filed: December 20, 2002
    Date of Patent: July 19, 2005
    Assignee: Saudi Basic Industries Corporation
    Inventors: Paulette N. Hazin, Paul E. Ellis, Jr.
  • Patent number: 6169202
    Abstract: Alkanes are converted to unsaturated carboxylic acids by contacting an alkane with an oxidizing agent and a Wells-Dawson type heteropolyacid supported on wide pore polyoxometallate salts.
    Type: Grant
    Filed: March 14, 2000
    Date of Patent: January 2, 2001
    Assignees: Sunoco, Inc. (R&M), Rohm and Haas Company
    Inventors: Tilak P. Wijesekera, James E. Lyons, Paul E. Ellis, Jr.
  • Patent number: 6060419
    Abstract: Alkanes are converted to unsaturated carboxylic acids by contacting an alkane with an oxidizing agent and a Wells-Dawson type heteropolyacid supported on wide pore polyoxometallate salts.
    Type: Grant
    Filed: August 14, 1998
    Date of Patent: May 9, 2000
    Assignees: Sunoco, Inc. (R&M), Rohm and Haas Company
    Inventors: Tilak P. Wijesekera, James E. Lyons, Paul E. Ellis, Jr.
  • Patent number: 6043184
    Abstract: Alkanes are converted to unsaturated carboxylic acids by contacting an alkane with an oxidizing agent and a heteropolyacid supported on wide pore polyoxometallate salts.
    Type: Grant
    Filed: January 5, 1998
    Date of Patent: March 28, 2000
    Assignees: Sunoco, Inc. (R&M), Rohm and Haas Company
    Inventors: Swati Karmakar, Anthony F. Volpe, Jr., Paul E. Ellis, Jr., James E. Lyons
  • Patent number: 5990348
    Abstract: Alkanes are converted to unsaturated carboxylic acids by contacting an alkane with an oxidizing agent and a heteropolyacid supported on wide pore polyoxometallate salts.
    Type: Grant
    Filed: January 5, 1998
    Date of Patent: November 23, 1999
    Assignees: Sunoco, Inc., Rohm and Haas Company
    Inventors: James E. Lyons, Anthony F. Volpe, Paul E. Ellis, Jr., Swati Karmakar
  • Patent number: 5990363
    Abstract: The invention comprises a method for the oxidation of alkanes to alcohols and for decomposition of hydroperoxides to alcohols utilizing new compositions of matter, which are metal complexes of porphyrins. Preferred complexes have hydrogen, haloalkyl or haloaryl groups in meso positions, two of the opposed meso atoms or groups being hydrogen or haloaryl, and two of the opposed meso atoms or groups being hydrogen or haloalkyl, but not all four of the meso atoms or groups being hydrogen. Other preferred complexes are ones in which all four of the meso positions are substituted with haloalkyl groups and the beta positions are substituted with halogen atoms. A new method of synthesizing porphyrinogens is also disclosed.
    Type: Grant
    Filed: December 29, 1993
    Date of Patent: November 23, 1999
    Assignee: Sun Company, Inc.
    Inventors: Tilak Wijesekera, James E. Lyons, Paul E. Ellis, Jr.
  • Patent number: 5770728
    Abstract: Transition metal complexes of meso-haloalkylporphyrins, wherein the haloalkyl groups contain 2 to 8 carbon atoms have been found to be highly effective catalysts for oxidation of alkanes and for the decomposition of hydroperoxides.
    Type: Grant
    Filed: December 19, 1996
    Date of Patent: June 23, 1998
    Assignee: Sun Company, Inc. (R&M)
    Inventors: Tilak Wijesekera, James E. Lyons, Paul E. Ellis, Jr., Manoj V. Bhinde
  • Patent number: 5767272
    Abstract: Transition metal complexes of meso-haloalkylporphyrins, wherein the haloalkyl groups contain 2 to 8 carbon atoms have been found to be highly effective catalysts for oxidation of alkanes and for the decomposition of hydroperoxides. Also disclosed is a process for the preparation of meso-halocarbyl-porphyrins which comprises contacting a halocarbyl dipyrromethane with a halocarbyl-substituted aldehyde in the presence of an acid granular solid catalyst. Also disclosed is a process for the preparation of meso-halocarbyl-porphyrins which comprises contacting a halocarbyl dipyrromethane with a halocarbyl-substituted aldehyde in the presence of an acid granular solic catalyst.
    Type: Grant
    Filed: December 19, 1996
    Date of Patent: June 16, 1998
    Assignee: Sun Company, Inc. (R&M)
    Inventors: Tilak Wijesekera, James E. Lyons, Paul E. Ellis, Jr., Manoj V. Bhinde
  • Patent number: 5760217
    Abstract: The invention comprises new compositions of matter, which are iron, manganese, cobalt or ruthenium complexes of porphyrins having hydrogen, haloalkyl or haloaryl groups in meso positions, two of the opposed meso atoms or groups being hydrogen or haloaryl, and two of the opposed meso atoms or groups being hydrogen or haloalkyl, but not all four of the meso atoms or groups being hydrogen. The invention also comprises new compositions of matter in which all four of the meso positions are substituted with haloalkyl groups and the beta positions are substituted with halogen atoms. A new method of synthesizing porphyrinogens is also provided.
    Type: Grant
    Filed: June 25, 1996
    Date of Patent: June 2, 1998
    Assignee: Sun Company, Inc.
    Inventors: Tilak Wijesekera, James E. Lyons, Paul E. Ellis, Jr.
  • Patent number: 5723677
    Abstract: The invention comprises a method for the oxidation of alkanes to alcohols and for decomposition of hydroperoxides to alcohols utilizing new compositions of matter, which are metal complexes of porphyrins. Preferred complexes have hydrogen, haloalkyl or haloaryl groups in meso positions, two of the opposed meso atoms or groups being hydrogen or haloaryl, and two of the opposed meso atoms or groups being hydrogen or haloalkyl, but not all four of the meso atoms or groups being hydrogen. Other preferred complexes are ones in which all four of the meso positions are substituted with haloalkyl groups and the beta positions are substituted with halogen atoms. A new method of synthesizing porphyrinogens is also disclosed.
    Type: Grant
    Filed: June 27, 1996
    Date of Patent: March 3, 1998
    Assignee: Sun Company, Inc. (R&M)
    Inventors: Tilak Wijesekera, James E. Lyons, Paul E. Ellis, Jr.
  • Patent number: 5705685
    Abstract: Alkanes are converted to unsaturated carboxylic acids by contacting an alkane with an oxidizing agent and a heteropolyacid or polyoxoanion comprising (1) at least 9 atoms of a first framework metal or metals comprising molybdenum, tungsten or vanadium or combinations thereof and (2) 1 to 3 atoms of a second framework metal or metals comprising zinc or a transition metal different from the first framework metal.
    Type: Grant
    Filed: October 31, 1995
    Date of Patent: January 6, 1998
    Assignee: Sun Company, Inc. (R&M)
    Inventors: James E. Lyons, Paul E. Ellis, Jr., Swati Karmakar, Shahid N. Shaikh
  • Patent number: 5672778
    Abstract: The invention comprises a method for the catalytic conversion of alkanes and alkylhydroperoxides to oxygenates, particularly alcohols, comprising the oxidation of alkanes to yield alkylhydroperoxides, alcohols, other reaction products and unreacted alkane, and the decomposition of said alkylhydroperoxides to form alcohols and oxygen. Decomposition of the alkylhydroperoxide in the presence of unreacted alkane increases the yield of alcohol. The process further comprises drying of the reaction mixture comprising alkylhydroperoxide. Suitable catalysts for the process of the invention comprise metal containing catalysts, including metal organic ligand catalysts such as unsubstituted and substituted metal complexes of porphyrins, phthalocyanines and acetylacetonates.
    Type: Grant
    Filed: August 26, 1996
    Date of Patent: September 30, 1997
    Assignee: Sun Company, Inc. (R & M)
    Inventors: James E. Lyons, Paul E. Ellis, Jr., Manoj V. Bhinde