Patents by Inventor Paul E. Glenn
Paul E. Glenn has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20190025214Abstract: A hand-held bioanalytic instrument is described that can perform massively parallel sample analysis including single-molecule gene sequencing. The instrument includes a pulsed optical source that produces ultrashort excitation pulses and a compact beam-steering assembly. The beam-steering assembly provides automated alignment of excitation pulses to an interchangeable bio-optoelectronic chip that contains tens of thousands of reaction chambers or more. The optical source, beam-steering assembly, bio-optoelectronic chip, and coupling optics register to an alignment structure in the instrument that can form at least one wall of an enclosure and dissipate heat.Type: ApplicationFiled: July 24, 2018Publication date: January 24, 2019Applicant: Quantum-Si IncoropratedInventors: Jonathan M. Rothberg, Benjamin Cipriany, Todd Rearick, Paul E. Glenn, Faisal R. Ahmad, Todd Roswech, Brittany Lathrop, Thomas Connolly
-
Publication number: 20180328850Abstract: Apparatus and methods for analyzing single molecule and performing nucleic acid sequencing. An integrated device includes multiple pixels with sample wells configured to receive a sample, which, when excited, emits radiation; at least one element for directing the emission radiation in a particular direction; and a light path along which the emission radiation travels from the sample well toward a sensor. The apparatus also includes an instrument that interfaces with the integrated device. Each sensor may detect emission radiation from a sample in a respective sample well. The instrument includes an excitation light source for exciting the sample in each sample well.Type: ApplicationFiled: July 5, 2018Publication date: November 15, 2018Applicant: Quantum-Si IncorporatedInventors: Jonathan M. Rothberg, Ali Kabiri, Jason W. Sickler, Brett J. Gyarfas, Jeremy Lackey, Gerard Schmid, Benjamin Cipriany, Jack Jewell, Lawrence C. West, Michael Ferrigno, Paul E. Glenn, Anthony Bellofiore
-
Publication number: 20180231465Abstract: Apparatus and methods for analyzing single molecule and performing nucleic acid sequencing. An apparatus can include an assay chip that includes multiple pixels with sample wells configured to receive a sample, which, when excited, emits emission energy; at least one element for directing the emission energy in a particular direction; and a light path along which the emission energy travels from the sample well toward a sensor. The apparatus also includes an instrument that interfaces with the assay chip. The instrument includes an excitation light source for exciting the sample in each sample well; a plurality of sensors corresponding the sample wells. Each sensor may detect emission energy from a sample in a respective sample well. The instrument includes at least one optical element that directs the emission energy from each sample well towards a respective sensor of the plurality of sensors.Type: ApplicationFiled: January 29, 2018Publication date: August 16, 2018Applicant: Quantum-Si IncorporatedInventors: Jonathan M. Rothberg, Ali Kabiri, Jason W. Sickler, Brett J. Gyarfas, Jeremy Lackey, Gerard Schmid, Paul E. Glenn, Lawrence C. West, Benjamin Cipriany, Keith G. Fife
-
Patent number: 10048208Abstract: Apparatus and methods for analyzing single molecule and performing nucleic acid sequencing. An integrated device includes multiple pixels with sample wells configured to receive a sample, which, when excited, emits radiation; at least one element for directing the emission radiation in a particular direction; and a light path along which the emission radiation travels from the sample well toward a sensor. The apparatus also includes an instrument that interfaces with the integrated device. Each sensor may detect emission radiation from a sample in a respective sample well. The instrument includes an excitation light source for exciting the sample in each sample well.Type: GrantFiled: November 17, 2014Date of Patent: August 14, 2018Assignee: Quantum-Si IncorporatedInventors: Jonathan M. Rothberg, Ali Kabiri, Jason W. Sickler, Brett J. Gyarfas, Jeremy Lackey, Gerard Schmid, Benjamin Cipriany, Jack Jewell, Lawrence West, Michael Ferrigno, Paul E. Glenn, Anthony Bellofiore
-
Publication number: 20180175582Abstract: Apparatus and methods for producing ultrashort optical pulses are described. A high-power, solid-state, passively mode-locked laser can be manufactured in a compact module that can be incorporated into a portable instrument. The mode-locked laser can produce sub-50-ps optical pulses at a repetition rates between 200 MHz and 50 MHz, rates suitable for massively parallel data-acquisition. The optical pulses can be used to generate a reference clock signal for synchronizing data-acquisition and signal-processing electronics of the portable instrument.Type: ApplicationFiled: December 15, 2017Publication date: June 21, 2018Inventors: Jonathan M. Rothberg, Jason W. Sickler, Lawrence C. West, Faisal R. Ahmad, Paul E. Glenn, Jack Jewell, John Glenn, Jose Camara, Jeremy Christopher Jordan, Todd Rearick, Farshid Ghasemi, Jonathan C. Schultz, Keith G. Fife, Benjamin Cipriany
-
Publication number: 20180173000Abstract: Apparatus and methods for coupling an optical beam from an optical source to a hi-tech system are described. A compact, low-cost beam-shaping and steering assembly may be located between the optical source and hi-tech system and provide automated adjustments to beam parameters such as beam position, beam rotation, and beam incident angles. The beam-shaping and steering assembly may be used to couple an elongated beam to a plurality of optical waveguides.Type: ApplicationFiled: December 14, 2017Publication date: June 21, 2018Inventors: Jonathan M. Rothberg, Paul E. Glenn, Jonathan C. Schultz, Benjamin Cipriany
-
Publication number: 20180172906Abstract: System and methods for optical power distribution to a large numbers of sample wells within an integrated device that can analyze single molecules and perform nucleic acid sequencing are described. The integrated device may include a grating coupler configured to receive an optical beam from an optical source and optical splitters configured to divide optical power of the grating coupler to waveguides of the integrated device positioned to couple with the sample wells. Outputs of the grating coupler may vary in one or more dimensions to account for an optical intensity profile of the optical source.Type: ApplicationFiled: December 15, 2017Publication date: June 21, 2018Applicant: Quantum-Si IncorporatedInventors: Jonathan M. Rothberg, Ali Kabiri, Gerard Schmid, Jason W. Sickler, Paul E. Glenn, Lawrence C. West, Kyle Preston, Alexander Gondarenko, Benjamin Cipriany, James Beach, Keith G. Fife, Farshid Ghasemi
-
Publication number: 20180088052Abstract: Apparatus and methods for analyzing single molecule and performing nucleic acid sequencing. An apparatus can include an assay chip that includes multiple pixels with sample wells configured to receive a sample, which, when excited, emits emission energy; at least one element for directing the emission energy in a particular direction; and a light path along which the emission energy travels from the sample well toward a sensor. The apparatus also includes an instrument that interfaces with the assay chip. The instrument includes an excitation light source for exciting the sample in each sample well; a plurality of sensors corresponding the sample wells. Each sensor may detect emission energy from a sample in a respective sample well. The instrument includes at least one optical element that directs the emission energy from each sample well towards a respective sensor of the plurality of sensors.Type: ApplicationFiled: November 10, 2017Publication date: March 29, 2018Applicant: Quantum-Si IncorporatedInventors: Jonathan M. Rothberg, Ali Kabiri, Jason W. Sickler, Brett J. Gyarfas, Jeremy Lackey, Gerard Schmid, Benjamin Cipriany, Jack Jewell, Lawrence C. West, Michael Ferrigno, Paul E. Glenn, Adam Ezra Cohen, Anthony Bellofiore
-
Patent number: 9921157Abstract: Apparatus and methods for analyzing single molecule and performing nucleic acid sequencing. An apparatus can include an assay chip that includes multiple pixels with sample wells configured to receive a sample, which, when excited, emits emission energy; at least one element for directing the emission energy in a particular direction; and a light path along which the emission energy travels from the sample well toward a sensor. The apparatus also includes an instrument that interfaces with the assay chip. The instrument includes an excitation light source for exciting the sample in each sample well; a plurality of sensors corresponding the sample wells. Each sensor may detect emission energy from a sample in a respective sample well. The instrument includes at least one optical element that directs the emission energy from each sample well towards a respective sensor of the plurality of sensors.Type: GrantFiled: August 7, 2015Date of Patent: March 20, 2018Assignee: Quantum-Si IncorporatedInventors: Jonathan M. Rothberg, Ali Kabiri, Jason W. Sickler, Brett J. Gyarfas, Jeremy Lackey, Gerard Schmid, Paul E. Glenn, Lawrence C. West, Benjamin Cipriany, Keith G. Fife
-
Patent number: 9863880Abstract: Apparatus and methods for analyzing single molecule and performing nucleic acid sequencing. An apparatus can include an assay chip that includes multiple pixels with sample wells configured to receive a sample, which, when excited, emits emission energy; at least one element for directing the emission energy in a particular direction; and a light path along which the emission energy travels from the sample well toward a sensor. The apparatus also includes an instrument that interfaces with the assay chip. The instrument includes an excitation light source for exciting the sample in each sample well; a plurality of sensors corresponding the sample wells. Each sensor may detect emission energy from a sample in a respective sample well. The instrument includes at least one optical element that directs the emission energy from each sample well towards a respective sensor of the plurality of sensors.Type: GrantFiled: November 17, 2014Date of Patent: January 9, 2018Assignee: Quantum-Si IncorporatedInventors: Jonathan M. Rothberg, Ali Kabiri, Jason W. Sickler, Brett J. Gyarfas, Jeremy Lackey, Gerard Schmid, Benjamin Cipriany, Jack Jewell, Lawrence West, Michael Ferrigno, Paul E. Glenn, Adam E. Cohen, Anthony Bellofiore
-
Publication number: 20170350818Abstract: System and methods for analyzing single molecules and performing nucleic acid sequencing. An integrated device may include multiple pixels with sample wells configured to receive a sample, which when excited, emits radiation. The integrated device includes a surface having a trench region recessed from a portion of the surface and an array of sample wells, disposed in the trench region. The integrated device also includes a waveguide configured to couple excitation energy to at least one sample well in the array and positioned at a first distance from a surface of the trench region and at a second distance from the surface in a region separate from the trench region. The first distance is smaller than the second distance. The system also includes an instrument that interfaces with the integrated device. The instrument may include an excitation energy source for providing excitation energy to the integrated device by coupling to an excitation energy coupling region of the integrated device.Type: ApplicationFiled: June 1, 2017Publication date: December 7, 2017Applicant: Quantum-Si IncorporatedInventors: Jonathan M. Rothberg, Ali Kabiri, Gerard Schmid, Keith G. Fife, James Beach, Jason W. Sickler, Lawrence C. West, Paul E. Glenn, Kyle Preston, Farshid Ghasemi, Benjamin Cipriany, Jeremy Lackey
-
Patent number: 9617594Abstract: Apparatus and methods for producing ultrashort optical pulses are described. A high-power, solid-state, passively mode-locked laser can be manufactured in a compact module that can be incorporated into a portable instrument for biological or chemical analyses. The pulsed laser may produce sub-100-ps optical pulses at a repetition rate commensurate with electronic data-acquisition rates. The optical pulses may excite samples in reaction chambers of the instrument, and be used to generate a reference clock for operating signal-acquisition and signal-processing electronics of the instrument.Type: GrantFiled: September 2, 2016Date of Patent: April 11, 2017Assignee: Quantum-Si IncorporatedInventors: Jonathan M. Rothberg, Jason W. Sickler, Lawrence C. West, Faisal R. Ahmad, Paul E. Glenn, Jack Jewell, John Glenn, Jose Camara, Jeremy Christopher Jordan, Todd Rearick, Farshid Ghasemi, Jonathan C. Schultz, Keith G. Fife
-
Publication number: 20160369332Abstract: Apparatus and methods for producing ultrashort optical pulses are described. A high-power, solid-state, passively mode-locked laser can be manufactured in a compact module that can be incorporated into a portable instrument for biological or chemical analyses. The pulsed laser may produce sub-100-ps optical pulses at a repetition rate commensurate with electronic data-acquisition rates. The optical pulses may excite samples in reaction chambers of the instrument, and be used to generate a reference clock for operating signal-acquisition and signal-processing electronics of the instrument.Type: ApplicationFiled: September 2, 2016Publication date: December 22, 2016Applicant: Quantum-Si IncorporatedInventors: Jonathan M. Rothberg, Jason W. Sickler, Lawrence C. West, Faisal R. Ahmad, Paul E. Glenn, Jack Jewell, John Glenn, Jose Camara, Jeremy Christopher Jordan, Todd Rearick, Farshid Ghasemi, Jonathan C. Schultz, Keith G. Fife
-
Publication number: 20160341664Abstract: Compact optical sources and methods for producing short and ultrashort optical pulses are described. A semiconductor laser or LED may be driven with a bipolar waveform to generate optical pulses with FWHM durations as short as approximately 85 ps having suppressed tail emission. The pulsed optical sources may be used for fluorescent lifetime analysis of biological samples and time-of-flight imaging, among other applications.Type: ApplicationFiled: May 20, 2016Publication date: November 24, 2016Applicant: Quantum-Si IncorporatedInventors: Jonathan M. Rothberg, Jason W. Sickler, Lawrence C. West, Faisal Ahmad, Brendan Huang, Paul E. Glenn, Jonathan C. Schultz, Jose Camara
-
Publication number: 20160344156Abstract: Apparatus and methods for producing ultrashort optical pulses are described. A high-power, solid-state, passively mode-locked laser can be manufactured in a compact module that can be incorporated into a portable instrument for biological or chemical analyses. The pulsed laser may produce sub-100-ps optical pulses at a repetition rate commensurate with electronic data-acquisition rates. The optical pulses may excite samples in reaction chambers of the instrument, and be used to generate a reference clock for operating signal-acquisition and signal-processing electronics of the instrument.Type: ApplicationFiled: May 20, 2016Publication date: November 24, 2016Applicant: Quantum-Si IncorporatedInventors: Jonathan M. Rothberg, Jason W. Sickler, Lawrence C. West, Faisal Ahmad, Paul E. Glenn, Jack Jewell, John Glenn, Jose Camara, Jeremy Christopher Jordan, Todd Rearick, Farshid Ghasemi, Jonathan C. Schultz, Keith G. Fife
-
Publication number: 20160041095Abstract: Apparatus and methods for analyzing single molecule and performing nucleic acid sequencing. An apparatus can include an assay chip that includes multiple pixels with sample wells configured to receive a sample, which, when excited, emits emission energy; at least one element for directing the emission energy in a particular direction; and a light path along which the emission energy travels from the sample well toward a sensor. The apparatus also includes an instrument that interfaces with the assay chip. The instrument includes an excitation light source for exciting the sample in each sample well; a plurality of sensors corresponding the sample wells. Each sensor may detect emission energy from a sample in a respective sample well. The instrument includes at least one optical element that directs the emission energy from each sample well towards a respective sensor of the plurality of sensors.Type: ApplicationFiled: August 7, 2015Publication date: February 11, 2016Applicant: Quantum-Si IncorporatedInventors: Jonathan M. Rothberg, Ali Kabiri, Jason W. Sickler, Brett J. Gyarfas, Jeremy Lackey, Gerard Schmid, Paul E. Glenn, Lawrence C. West, Benjamin Cipriany, Keith G. Fife
-
Publication number: 20150177150Abstract: Apparatus and methods for analyzing single molecule and performing nucleic acid sequencing. An apparatus can include an assay chip that includes multiple pixels with sample wells configured to receive a sample, which, when excited, emits emission energy; at least one element for directing the emission energy in a particular direction; and a light path along which the emission energy travels from the sample well toward a sensor. The apparatus also includes an instrument that interfaces with the assay chip. The instrument includes an excitation light source for exciting the sample in each sample well; a plurality of sensors corresponding the sample wells. Each sensor may detect emission energy from a sample in a respective sample well. The instrument includes at least one optical element that directs the emission energy from each sample well towards a respective sensor of the plurality of sensors.Type: ApplicationFiled: November 17, 2014Publication date: June 25, 2015Applicant: Quantum-Si IncorporatedInventors: Jonathan M. Rothberg, Ali Kabiri, Jason W. Sickler, Brett J. Gyarfas, Jeremy Lackey, Gerard Schmid, Benjamin Cipriany, Jack Jewell, Lawrence West, Michael Ferrigno, Paul E. Glenn, Adam E. Cohen, Anthony Bellofiore
-
Publication number: 20150141267Abstract: Apparatus and methods for analyzing single molecule and performing nucleic acid sequencing. An integrated device includes multiple pixels with sample wells configured to receive a sample, which, when excited, emits radiation; at least one element for directing the emission radiation in a particular direction; and a light path along which the emission radiation travels from the sample well toward a sensor. The apparatus also includes an instrument that interfaces with the integrated device. Each sensor may detect emission radiation from a sample in a respective sample well. The instrument includes an excitation light source for exciting the sample in each sample well.Type: ApplicationFiled: November 17, 2014Publication date: May 21, 2015Applicant: Quantum-Si IncorporatedInventors: Jonathan M. Rothberg, Ali Kabiri, Jason W. Sickler, Brett J. Gyarfas, Jeremy Lackey, Gerard Schmid, Benjamin Cipriany, Jack Jewell, Lawrence West, Michael Ferrigno, Paul E. Glenn, Anthony Bellofiore
-
Publication number: 20110090487Abstract: Methods, apparatus, and systems for providing feedback to a subject in connection with a performance of a task, such as a movement task. The movement task may involve an operation or movement of an object by the subject, such as a body part or a sporting implement. During the movement task, the object has an expected motion path that is associated with one or more target areas. Behavior control feedback may be provided to the subject based on one or more of a position of the object, a motion of the object and an orientation of the object relative to one or more target areas as the subject performs the movement task. One example of an apparatus for providing behavior control feedback includes one or more radiation sources, one or more radiation detectors, and one or more indicators, any of which may be coupled to or otherwise integrated with the object.Type: ApplicationFiled: December 3, 2004Publication date: April 21, 2011Inventors: Karl B. Schmidt, Paul E. Glenn, Steven H. Mersch