Patents by Inventor Paul E. King

Paul E. King has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230349024
    Abstract: Magnetic field components measured around and along a remelting furnace and other measured furnace parameters are used to estimate concentricity of the electrode within the crucible of the furnace, to estimate a distribution of drip shorts across a gap between the electrode and the melt pool, or to detect, locate, and categorize anomalous events during the remelting process. Those can be used to control the operation of the furnace during the remelting process, or incorporated into a longitudinal or three-dimensional map of the resulting ingot. Artificial intelligence, machine learning, or a neural network can be employed.
    Type: Application
    Filed: March 31, 2023
    Publication date: November 2, 2023
    Inventors: Matthew A. Cibula, Joshua R. Motley, Nathan L. Pettinger, Daniel R. McCulley, Paul E. King
  • Patent number: 11674191
    Abstract: Sensors measure magnetic field components, and the measured fields are used to calculate and estimated transverse position of a longitudinal electric current flowing as an electric discharge across a discharge gap. Based on the estimated position, and according to a selected transverse trajectory or distribution of the estimated discharge position, magnetic fields are applied transversely across the discharge gap so as to control or alter the estimated discharge position. Inventive apparatus and methods can be employed, inter alia, during operation of a vacuum arc furnace.
    Type: Grant
    Filed: January 31, 2022
    Date of Patent: June 13, 2023
    Assignee: KW ASSOCIATES LLC
    Inventors: Matthew A. Cibula, Joshua R. Motley, C. Rigel Woodside, Paul E. King
  • Publication number: 20230141555
    Abstract: Magnetic field components are measured at multiple longitudinal positions and used to calculate estimated longitudinal position and length of a transversely localized electric current segment flowing across a gap between conductive bodies. The apparatus can be used with a remelting furnace. The electrode and ingot act as the conductive bodies, and arcs, discharges, or slag currents are the current segments spanning the gap. Actuators for movable sensors can be coupled to the sensors in a servomechanism arrangement to move the sensors along with the moving gap. An actuator for moving one of the conductive bodies can be coupled to sensors in a servomechanism arrangement to maintain the gap distance within a selected range as the gap moves.
    Type: Application
    Filed: September 11, 2022
    Publication date: May 11, 2023
    Applicant: KW Associates LLC
    Inventors: Matthew A. Cibula, Paul E. King, Joshua R. Motley, Nathan L. Pettinger
  • Patent number: 11459627
    Abstract: Multiple magnetic field sensors are arranged around a current-containing volume at multiple longitudinal and circumferential positions. Each sensor measures multiple magnetic field components and is characterized by one or more calibration parameters. A longitudinal primary current flows through two end-to-end electrical conductors that are separated by an arc gap, and flows as at least one longitudinal primary electric arc that spans the arc gap and that moves transversely within the arc gap. Estimated transverse position of the primary electric arc is calculated, based on the longitudinal position of the arc gap, and two or more of the measured magnetic field components along with one or more corresponding sensor positions or calibration parameters. In addition, estimated occurrence, position, and magnitude of a transverse secondary current (i.e., a side arc) can be calculated based on those quantities.
    Type: Grant
    Filed: May 28, 2021
    Date of Patent: October 4, 2022
    Assignee: KW ASSOCIATES LLC
    Inventors: Matthew A. Cibula, Paul E. King, C. Rigel Woodside
  • Publication number: 20220154300
    Abstract: Sensors measure magnetic field components, and the measured fields are used to calculate and estimated transverse position of a longitudinal electric current flowing as an electric discharge across a discharge gap. Based on the estimated position, and according to a selected transverse trajectory or distribution of the estimated discharge position, magnetic fields are applied transversely across the discharge gap so as to control or alter the estimated discharge position. Inventive apparatus and methods can be employed, inter alia, during operation of a vacuum arc furnace.
    Type: Application
    Filed: January 31, 2022
    Publication date: May 19, 2022
    Inventors: Matthew A. Cibula, Joshua R. Motley, C. Rigel Woodside, Paul E. King
  • Patent number: 11243273
    Abstract: Magnetic field components are measured at multiple longitudinal positions and used to calculate estimated longitudinal position and length of a transversely localized electric current segment flowing across a gap between conductive bodies. The apparatus can be used with a remelting furnace. The electrode and ingot act as the conductive bodies, and arcs, discharges, or slag currents are the current segments spanning the gap. Actuators for movable sensors can be coupled to the sensors in a servomechanism arrangement to move the sensors along with the moving gap. An actuator for moving one of the conductive bodies can be coupled to sensors in a servomechanism arrangement to maintain the gap distance within a selected range as the gap moves.
    Type: Grant
    Filed: March 14, 2021
    Date of Patent: February 8, 2022
    Assignee: KW ASSOCIATES LLC
    Inventors: Matthew A. Cibula, Paul E. King, Joshua R. Motley, Nathan L. Pettinger
  • Patent number: 11236404
    Abstract: Sensors measure magnetic field components, and the measured fields are used to calculate and estimated transverse position of a longitudinal electric current flowing as an electric discharge across a discharge gap. Based on the estimated position, and according to a selected transverse trajectory or distribution of the estimated discharge position, magnetic fields are applied transversely across the discharge gap so as to control or alter the estimated discharge position. Inventive apparatus and methods can be employed, inter alia, during operation of a vacuum arc furnace.
    Type: Grant
    Filed: July 27, 2020
    Date of Patent: February 1, 2022
    Assignee: KW ASSOCIATES LLC
    Inventors: Matthew A. Cibula, Joshua R. Motley, C. Rigel Woodside, Paul E. King
  • Publication number: 20210395845
    Abstract: Multiple magnetic field sensors are arranged around a current-containing volume at multiple longitudinal and circumferential positions. Each sensor measures multiple magnetic field components and is characterized by one or more calibration parameters. A longitudinal primary current flows through two end-to-end electrical conductors that are separated by an arc gap, and flows as at least one longitudinal primary electric arc that spans the arc gap and that moves transversely within the arc gap. Estimated transverse position of the primary electric arc is calculated, based on the longitudinal position of the arc gap, and two or more of the measured magnetic field components along with one or more corresponding sensor positions or calibration parameters. In addition, estimated occurrence, position, and magnitude of a transverse secondary current (i.e., a side arc) can be calculated based on those quantities.
    Type: Application
    Filed: May 28, 2021
    Publication date: December 23, 2021
    Inventors: Matthew A. Cibula, Paul E. King, C. Rigel Woodside
  • Publication number: 20210286024
    Abstract: Magnetic field components are measured at multiple longitudinal positions and used to calculate estimated longitudinal position and length of a transversely localized electric current segment flowing across a gap between conductive bodies. The apparatus can be used with a remelting furnace. The electrode and ingot act as the conductive bodies, and arcs, discharges, or slag currents are the current segments spanning the gap. Actuators for movable sensors can be coupled to the sensors in a servomechanism arrangement to move the sensors along with the moving gap. An actuator for moving one of the conductive bodies can be coupled to sensors in a servomechanism arrangement to maintain the gap distance within a selected range as the gap moves.
    Type: Application
    Filed: March 14, 2021
    Publication date: September 16, 2021
    Applicant: KW Associates LLC
    Inventors: Matthew A. Cibula, Paul E. King, Joshua R. Motley, Nathan L. Pettinger
  • Patent number: 11022656
    Abstract: Multiple magnetic field sensors are arranged around a current-containing volume at multiple longitudinal and circumferential positions. Each sensor measures multiple magnetic field components and is characterized by one or more calibration parameters. A longitudinal primary current flows through two end-to-end electrical conductors that are separated by an arc gap, and flows as at least one longitudinal primary electric arc that spans the arc gap and that moves transversely within the arc gap. Estimated transverse position of the primary electric arc is calculated, based on the longitudinal position of the arc gap, and two or more of the measured magnetic field components along with one or more corresponding sensor positions or calibration parameters. In addition, estimated occurrence, position, and magnitude of a transverse secondary current (i.e., a side arc) can be calculated based on those quantities.
    Type: Grant
    Filed: December 18, 2019
    Date of Patent: June 1, 2021
    Assignee: KW ASSOCIATES LLC
    Inventors: Matthew A. Cibula, Paul E. King, C. Rigel Woodside
  • Publication number: 20200355731
    Abstract: Sensors measure magnetic field components, and the measured fields are used to calculate and estimated transverse position of a longitudinal electric current flowing as an electric discharge across a discharge gap. Based on the estimated position, and according to a selected transverse trajectory or distribution of the estimated discharge position, magnetic fields are applied transversely across the discharge gap so as to control or alter the estimated discharge position. Inventive apparatus and methods can be employed, inter alia, during operation of a vacuum arc furnace.
    Type: Application
    Filed: July 27, 2020
    Publication date: November 12, 2020
    Inventors: Matthew A. Cibula, Joshua R. Motley, C. Rigel Woodside, Paul E. King
  • Patent number: 10761116
    Abstract: Sensors measure magnetic field components, and the measured fields are used to calculate and estimated transverse position of a longitudinal electric current flowing as an electric discharge across a discharge gap. Based on the estimated position, and according to a selected transverse trajectory or distribution of the estimated discharge position, magnetic fields are applied transversely across the discharge gap so as to control or alter the estimated discharge position. Inventive apparatus and methods can be employed, inter alia, during operation of a vacuum arc furnace.
    Type: Grant
    Filed: December 4, 2018
    Date of Patent: September 1, 2020
    Assignee: KW ASSOCIATES LLC
    Inventors: Matthew A. Cibula, Joshua R. Motley, C. Rigel Woodside, Paul E. King
  • Publication number: 20200241078
    Abstract: Multiple magnetic field sensors are arranged around a current-containing volume at multiple longitudinal and circumferential positions. Each sensor measures multiple magnetic field components and is characterized by one or more calibration parameters. A longitudinal primary current flows through two end-to-end electrical conductors that are separated by an arc gap, and flows as at least one longitudinal primary electric arc that spans the arc gap and that moves transversely within the arc gap. Estimated transverse position of the primary electric arc is calculated, based on the longitudinal position of the arc gap, and two or more of the measured magnetic field components along with one or more corresponding sensor positions or calibration parameters. In addition, estimated occurrence, position, and magnitude of a transverse secondary current (i.e., a side arc) can be calculated based on those quantities.
    Type: Application
    Filed: December 18, 2019
    Publication date: July 30, 2020
    Inventors: Matthew A. Cibula, Paul E. King, C. Rigel Woodside
  • Patent number: 10514413
    Abstract: Multiple magnetic field sensors are arranged around a current-containing volume at multiple longitudinal and circumferential positions. Each sensor measures multiple magnetic field components and is characterized by one or more calibration parameters. A longitudinal primary current flows through two end-to-end electrical conductors that are separated by an arc gap, and flows as at least one longitudinal primary electric arc that spans the arc gap and that moves transversely within the arc gap. Estimated transverse position of the primary electric arc is calculated, based on the longitudinal position of the arc gap, and two or more of the measured magnetic field components along with one or more corresponding sensor positions or calibration parameters. In addition, estimated occurrence, position, and magnitude of a transverse secondary current (i.e., a side arc) can be calculated based on those quantities.
    Type: Grant
    Filed: September 25, 2017
    Date of Patent: December 24, 2019
    Assignee: KW Associates LLC
    Inventors: Matthew A. Cibula, Paul E. King, C. Rigel Woodside
  • Publication number: 20190219615
    Abstract: Sensors measure magnetic field components, and the measured fields are used to calculate and estimated transverse position of a longitudinal electric current flowing as an electric discharge across a discharge gap. Based on the estimated position, and according to a selected transverse trajectory or distribution of the estimated discharge position, magnetic fields are applied transversely across the discharge gap so as to control or alter the estimated discharge position. Inventive apparatus and methods can be employed, inter alia, during operation of a vacuum arc furnace.
    Type: Application
    Filed: December 4, 2018
    Publication date: July 18, 2019
    Inventors: Matthew A. Cibula, Joshua R. Motley, C. Rigel Woodside, Paul E. King
  • Patent number: 10343134
    Abstract: A reaction chamber contains catalytic material(s). Tunable microwave source(s) each emit microwave radiation at corresponding time-varying microwave frequency(ies) or at simultaneous multiple different microwave frequencies. Microwave transmission element(s) irradiate the interior volume of the reaction chamber with the microwave radiation, emitted by the microwave source(s), that propagates along the transmission element(s) into the reaction chamber. The reaction chamber is characterized by a maximum temperature variation of a fixed-frequency, steady-state temperature spatial profile that results from irradiation of the reaction chamber by microwave radiation at a substantially fixed microwave frequency and at a reference microwave power level.
    Type: Grant
    Filed: October 12, 2016
    Date of Patent: July 9, 2019
    Assignee: ECOKAP TECHNOLOGIES LLC
    Inventor: Paul E. King
  • Patent number: 10053634
    Abstract: An input stream of gaseous nitrogen and carbon dioxide is introduced into a first interior volume of a separation vessel that is divided into first and second interior volumes by a separation membrane that includes a metal layer. The metal layer selectively permits movement of nitrogen through the metal layer. An output stream of gaseous nitrogen and carbon dioxide is conveyed out of the first interior volume and into a reaction vessel. The volume fraction of carbon dioxide is greater in the output stream than in the input stream; the volume fraction of nitrogen is reduced in the output stream relative to the input stream. Nitrogen is removed from the second interior volume to maintain a gradient of nitrogen partial pressure across the separation membrane that causes net transport of nitrogen from the first interior volume through the separation membrane into the second interior volume.
    Type: Grant
    Filed: June 30, 2017
    Date of Patent: August 21, 2018
    Assignee: ECOKAP TECHNOLOGIES LLC
    Inventors: Paul E. King, Jennifer Wilcox
  • Patent number: 9993797
    Abstract: A method for conversion of carbon dioxide to carbon monoxide comprises: introducing a flow of a dehumidified gaseous source of carbon dioxide into a reaction vessel; and irradiating dried, solid carbonaceous material in the reaction vessel with microwave energy. Heating of the irradiated carbonaceous material drives an endothermic reaction of carbon dioxide and carbon that produces carbon monoxide. At least a portion of heat required to maintain a temperature within the reaction vessel is supplied by the microwave energy. Carbon monoxide thus produced is allowed to flow out of the reaction vessel.
    Type: Grant
    Filed: January 10, 2017
    Date of Patent: June 12, 2018
    Assignee: ECOKAP TECHNOLOGIES LLC
    Inventors: Paul E. King, Ben Zion Livneh
  • Publication number: 20180127660
    Abstract: An input stream of gaseous nitrogen and carbon dioxide is introduced into a first interior volume of a separation vessel that is divided into first and second interior volumes by a separation membrane that includes a metal layer. The metal layer selectively permits movement of nitrogen through the metal layer. An output stream of gaseous nitrogen and carbon dioxide is conveyed out of the first interior volume and into a reaction vessel. The volume fraction of carbon dioxide is greater in the output stream than in the input stream; the volume fraction of nitrogen is reduced in the output stream relative to the input stream. Nitrogen is removed from the second interior volume to maintain a gradient of nitrogen partial pressure across the separation membrane that causes net transport of nitrogen from the first interior volume through the separation membrane into the second interior volume.
    Type: Application
    Filed: June 30, 2017
    Publication date: May 10, 2018
    Inventors: Paul E. King, Jennifer Wilcox
  • Patent number: 9932230
    Abstract: A method for conversion of greenhouse gases comprises: introducing a flow of a dehumidified gaseous source of carbon dioxide into a reaction vessel; introducing a flow of a dehumidified gaseous source of methane into the reaction vessel; and irradiating catalytic material in the reaction vessel with microwave energy. The irradiated catalytic material is heated and catalyzes an endothermic reaction of carbon dioxide and methane that produces hydrogen and carbon monoxide. At least a portion of heat required to maintain a temperature within the reaction vessel is supplied by the microwave energy. A mixture that includes carbon monoxide and hydrogen can undergo catalyzed reactions producing multiple-carbon reaction products in a lower-temperature portion of the reaction vessel.
    Type: Grant
    Filed: August 4, 2016
    Date of Patent: April 3, 2018
    Assignee: ECOKAP Technologies LLC
    Inventors: Paul E. King, Ben Zion Livneh