Patents by Inventor Paul E. Schilling

Paul E. Schilling has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7208411
    Abstract: A method of depositing a metal film on a substrate includes a supercritical preclean step, a supercritical desorb step, and a metal deposition step. Preferably, the preclean step comprises maintaining supercritical carbon dioxide and a chelating agent in contact with the substrate in order to remove an oxide layer from a metal surface of the substrate. More preferably, the preclean step comprises maintaining the supercritical carbon dioxide, the chelating agent, and an acid in contact with the substrate. Alternatively, the preclean step comprises maintaining the supercritical carbon dioxide and an amine in contact with the oxide layer. The desorb step comprises maintaining supercritical carbon dioxide in contact with the substrate in order to remove adsorbed material from the substrate.
    Type: Grant
    Filed: June 16, 2004
    Date of Patent: April 24, 2007
    Assignee: Tokyo Electron Limited
    Inventors: Maximilian A. Biberger, Paul E. Schilling
  • Patent number: 6890853
    Abstract: A method of depositing a metal film on a substrate includes a supercritical preclean step, a supercritical desorb step, and a metal deposition step. Preferably, the preclean step includes maintaining supercritical carbon dioxide and a chelating agent in contact with the substrate in order to remove an oxide layer from a metal surface of the substrate. More preferably, the preclean step includes maintaining the supercritical carbon dioxide, the chelating agent, and an acid in contact with the substrate. Alternatively, the preclean step includes maintaining the supercritical carbon dioxide and an amine in contact with the oxide layer. The desorb step includes maintaining supercritical carbon dioxide in contact with the substrate in order to remove adsorbed material from the substrate.
    Type: Grant
    Filed: April 24, 2001
    Date of Patent: May 10, 2005
    Assignee: Tokyo Electron Limited
    Inventors: Maximilian A. Biberger, Paul E. Schilling
  • Publication number: 20040229449
    Abstract: A method of depositing a metal film on a substrate includes a supercritical preclean step, a supercritical desorb step, and a metal deposition step. Preferably, the preclean step comprises maintaining supercritical carbon dioxide and a chelating agent in contact with the substrate in order to remove an oxide layer from a metal surface of the substrate. More preferably, the preclean step comprises maintaining the supercritical carbon dioxide, the chelating agent, and an acid in contact with the substrate. Alternatively, the preclean step comprises maintaining the supercritical carbon dioxide and an amine in contact with the oxide layer. The desorb step comprises maintaining supercritical carbon dioxide in contact with the substrate in order to remove adsorbed material from the substrate.
    Type: Application
    Filed: June 16, 2004
    Publication date: November 18, 2004
    Inventors: Maximilian A. Biberger, Paul E. Schilling
  • Publication number: 20040192172
    Abstract: An oxidizing slurry for removal of low dielectric constant materials. The slurry is formed utilizing non-oxidizing particles with a separate oxidizing agent, oxidizing particles alone or reducible abrasive particles with a compatible oxidizing agent. The particles can be formed of a metal oxide, nitride, or carbide material, by itself or mixtures thereof, or can be coated on a core material such as silicon dioxide or can be coformed therewith. A preferred oxidizing slurry is multi-modal in particle size distribution. Although developed for utilization in CMP semiconductor processing the oxidizing slurry of the present invention also can be utilized for other high precision polishing processes.
    Type: Application
    Filed: June 9, 2003
    Publication date: September 30, 2004
    Inventors: Dan Towery, Neil H. Hendricks, Paul E. Schilling, Tian-An Chen
  • Publication number: 20040177867
    Abstract: A method of removing a material from an oxide surface of a substrate, where the material is selected from the group consisting of photoresist, photoresist residue, etch residue, and a combination thereof, comprises first and second steps. The first step comprises maintaining a supercritical fluid, a carrier solvent, a tetra-organic ammonium fluoride, and HF in contact with the substrate until the material separates from the oxide surface, thereby forming separated material. The second step comprises removing the separated material from the vicinity of the substrate.
    Type: Application
    Filed: May 20, 2003
    Publication date: September 16, 2004
    Applicant: Supercritical Systems, Inc.
    Inventor: Paul E. Schilling
  • Publication number: 20040112409
    Abstract: A method and system for removing a residue from a substrate material is disclosed. The method and system utilize a supercritical cleaning solution with an fluoride source to control the concentration of fluoride ions and/or hydrogen fluoride within the supercritical cleaning solution. Preferably, the method and the system utilize a supercritical cleaning solution with supercritical CO2 and an ammonium fluoride salt and/or an organo-ammonium fluoride and/or amine adduct. The supercritical cleaning solution, in accordance with further embodiments, includes one or more acids and one or more carrier solvents. The supercritical cleaning solution of the present invention is capable of removing a residue, such a post-etch photo polymer residue from a semiconductor substrate material by dissolution of the reside, etching a portion of the residue, etching a portion of the substrate material or any combination thereof.
    Type: Application
    Filed: December 16, 2002
    Publication date: June 17, 2004
    Applicant: Supercritical Sysems, Inc.
    Inventor: Paul E. Schilling
  • Patent number: 6500605
    Abstract: A method of removing photoresist and residue from a substrate begins by maintaining supercritical carbon dioxide, an amine, and a solvent in contact with the substrate so that the amine and the solvent at least partially dissolve the photoresist and the residue. Preferably, the amine is a tertiary amine. Preferably, the solvent is selected from the group consisting of DMSO, EC, NMP, acetyl acetone, BLO, acetic acid, DMAC, PC, and a mixture thereof. Next, the photoresist and the residue are removed from the vicinity of the substrate. Preferably, the method continues with a rinsing step in which the substrate is rinsed in the supercritical carbon dioxide and a rinse agent. Preferably, the rinse agent is selected from the group consisting of water, alcohol, a mixture thereof, and acetone. In an alternative embodiment, the amine and the solvent are replaced with an aqueous fluoride.
    Type: Grant
    Filed: October 25, 2000
    Date of Patent: December 31, 2002
    Assignee: Tokyo Electron Limited
    Inventors: William H. Mullee, Maximilian A. Biberger, Paul E. Schilling
  • Publication number: 20020009955
    Abstract: An oxidizing slurry for removal of low dielectric constant materials. The slurry is formed utilizing non-oxidizing particles with a separate oxidizing agent, oxidizing particles alone or reducible abrasive particles with a compatible oxidizing agent. The particles can be formed of a metal oxide, nitride, or carbide material, by itself or mixtures thereof, or can be coated on a core material such as silicon dioxide or can be coformed therewith. A preferred oxidizing slurry is multi-modal in particle size distribution. Although developed for utilization in CMP semiconductor processing the oxidizing slurry of the present invention also can be utilized for other high precision polishing processes.
    Type: Application
    Filed: June 14, 2001
    Publication date: January 24, 2002
    Inventors: Daniel L. Towery, Neil H. Hendricks, Paul E. Schilling, Tian-An Chen
  • Publication number: 20020001929
    Abstract: A method of depositing a metal film on a substrate includes a supercritical preclean step, a supercritical desorb step, and a metal deposition step. Preferably, the preclean step comprises maintaining supercritical carbon dioxide and a chelating agent in contact with the substrate in order to remove an oxide layer from a metal surface of the substrate. More preferably, the preclean step comprises maintaining the supercritical carbon dioxide, the chelating agent, and an acid in contact with the substrate. Alternatively, the preclean step comprises maintaining the supercritical carbon dioxide and an amine in contact with the oxide layer. The desorb step comprises maintaining supercritical carbon dioxide in contact with the substrate in order to remove adsorbed material from the substrate.
    Type: Application
    Filed: April 24, 2001
    Publication date: January 3, 2002
    Inventors: Maximilian A. Biberger, Paul E. Schilling
  • Patent number: 6270395
    Abstract: An oxidizing slurry for removal of low dielectric constant materials. The slurry is formed utilizing non-oxidizing particles with a separate oxidizing agent, oxidizing particles alone or reducible abrasive particles with a compatible oxidizing agent. The particles can be formed of a metal oxide, nitride, or carbide material, by itself or mixtures thereof, or can be coated on a core material such as silicon dioxide or can be coformed therewith. A preferred oxidizing slurry is multi-modal in particle size distribution. Although developed for utilization in CMP semiconductor processing the oxidizing slurry of the present invention also can be utilized for other high precision polishing processes.
    Type: Grant
    Filed: September 24, 1998
    Date of Patent: August 7, 2001
    Assignee: AlliedSignal, Inc.
    Inventors: Daniel L. Towery, Neil H. Hendricks, Paul E. Schilling, Tian-An Chen
  • Patent number: 6124421
    Abstract: Dielectric compositions encompassing one or more poly(arylene ether) polymers are provided. The dielectric compositions have the repetitive structural unit: ##STR1## where n=0 to 1; m=0 to 1-n; and Y.sub.1, Y.sub.2, Ar.sub.1 and Ar.sub.2 are each a divalent arylene radical, Y.sub.1 and Y.sub.2 derived from biphenol compounds, Ar.sub.1 derived from difluoroarylethynes and Ar.sub.2 derived from difluoroaryl compounds. Where both Y.sub.1 and Y.sub.2 are derived from fluorene bisphenol, n=0.1 to 1. Such poly(arylene ether) polymers are employed with a variety of microelectronic devices, for example, integrated circuits and multichip modules.
    Type: Grant
    Filed: December 12, 1997
    Date of Patent: September 26, 2000
    Assignee: AlliedSignal Inc.
    Inventors: Kreisler S. Y. Lau, Tian-An Chen, Boris A. Korolev, Emma Brouk, Paul E. Schilling, Heike W. Thompson