Patents by Inventor Paul E. West

Paul E. West has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240079843
    Abstract: Apparatus and methods for producing ultrashort optical pulses are described. A high-power, solid-state, passively mode-locked laser can be manufactured in a compact module that can be incorporated into a portable instrument. The mode-locked laser can produce sub-50-ps optical pulses at a repetition rates between 200 MHz and 50 MHz, rates suitable for massively parallel data-acquisition. The optical pulses can be used to generate a reference clock signal for synchronizing data-acquisition and signal-processing electronics of the portable instrument.
    Type: Application
    Filed: November 8, 2023
    Publication date: March 7, 2024
    Applicant: Quantum-Si Incorporated
    Inventors: Jonathan M. Rothberg, Jason W. Sickler, Lawrence C. West, Faisal R. Ahmad, Paul E. Glenn, Jack Jewell, John Glenn, Jose Camara, Jeremy Christopher Jordan, Todd Rearick, Farshid Ghasemi, Jonathan C. Schultz, Keith G. Fife, Benjamin Cipriany
  • Patent number: 8117729
    Abstract: A method for rapidly deploying a floating hot tub is disclosed. The method includes providing a collapsible frame, having a collapsed configuration and a deployed configuration. The deployed frame defines an interior volume, at least one seat, and an upper periphery. An insulated liner sized is deployed and attached to the deployed collapsible frame. The insulted liner is filled with water. The water within the insulated liner is heated.
    Type: Grant
    Filed: February 26, 2008
    Date of Patent: February 21, 2012
    Inventor: Paul E. West
  • Patent number: 7987531
    Abstract: A portable floating hot tub that is easy to assemble and take down and can be used in environments with extremely cold and turbulent water. The hot tub has three main components: a collapsible frame made of connected rigid members, an insulated liner sized and shaped to closely fit against the deployed frame and form a subassembly, and an inflatable pontoon that may have a central aperture for receiving the subassembly. The pontoon is first inflated and placed on the body of water, after which the frame and liner subassembly are placed over the central aperture. Filling the internal volume defined by the insulated liner with water causes the subassembly to descend within the pontoon. Cooperating means on the subassembly and/or pontoon prevent the subassembly from passing completely through the central aperture. A source of heated water such as a portable heater having a heating capacity of at least 30,000 BTUs rapidly heats up the water within the hot tub.
    Type: Grant
    Filed: February 26, 2008
    Date of Patent: August 2, 2011
    Inventor: Paul E. West
  • Publication number: 20110094025
    Abstract: An easy to assemble portable floating hot tub for use in even cold and turbulent water includes an inflatable pontoon, an insulated liner peripherally connected to the pontoon and defining hot tub fill volume, and flexible members extending from the pontoon under the liner such that the weight of the liner filled with water is supported partly by the flexible members. A floor made of rigid spaced apart and parallel slats can be rolled up with the flexible liner and deflated pontoon. A collapsible frame made of connected rigid members may be provided in or outside of the liner. The pontoon is placed on the body of water and inflated. Filling the internal volume defined by the insulated liner with water causes it to descend below the pontoon. A portable heater having a heating capacity of at least 30,000 BTUs rapidly heats up the water within the hot tub. The system components can be transported in carry bags of less than 100 pounds and deployed by one person in an extremely small space, such as on a boat.
    Type: Application
    Filed: September 15, 2009
    Publication date: April 28, 2011
    Inventor: PAUL E. WEST
  • Publication number: 20090070904
    Abstract: A scanning probe microscope that is easy to use, inexpensive to manufacture, has a fast scan rate, and has a broad range of applications. The oscillating sensor has a high resonance frequency. Because an oscillator is used, alignment of a laser is not required. Further, probe approach and scanning can be achieved at much faster rates.
    Type: Application
    Filed: June 16, 2008
    Publication date: March 12, 2009
    Inventors: Paul E. West, Richard S. Becker, Zhiqiang Peng
  • Patent number: 7435955
    Abstract: A system for controlling the operation of a scanning probe microscope that greatly simplifies the microscope's operation is disclosed. The software design incorporates several advanced features such as a sample designator file, video tutorials, automation algorithms, and the ability to remotely load sample designator files and video tutorials.
    Type: Grant
    Filed: July 29, 2005
    Date of Patent: October 14, 2008
    Inventor: Paul E. West
  • Publication number: 20080201931
    Abstract: A portable floating hot tub that is easy to assemble and take down and can be used in environments with extremely cold and turbulent water. The hot tub has three main components: a collapsible frame made of connected rigid members, an insulated liner sized and shaped to closely fit against the deployed frame and form a subassembly, and an inflatable pontoon that may have a central aperture for receiving the subassembly. The pontoon is first inflated and placed on the body of water, after which the frame and liner subassembly are placed over the central aperture. Filling the internal volume defined by the insulated liner with water causes the subassembly to descend within the pontoon: Cooperating means on the subassembly and/or pontoon prevent the subassembly from passing completely through the central aperture. A source of heated water such as a portable heater having a heating capacity of at least 30,000 BTUs rapidly heats up the water within the hot tub.
    Type: Application
    Filed: February 26, 2008
    Publication date: August 28, 2008
    Inventor: Paul E. West
  • Publication number: 20080201838
    Abstract: A portable floating hot tub that is easy to assemble and take down and can be used in environments with extremely cold and turbulent water. The hot tub has three main components: a collapsible frame made of connected rigid members, an insulated liner sized and shaped to closely fit against the deployed frame and form a subassembly, and an inflatable pontoon that may have a central aperture for receiving the subassembly. The pontoon is first inflated and placed on the body of water, after which the frame and liner subassembly are placed over the central aperture. Filling the internal volume defined by the insulated liner with water causes the subassembly to descend within the pontoon. Cooperating means on the subassembly and/or pontoon prevent the subassembly from passing completely through the central aperture. A source of heated water such as a portable heater having a heating capacity of at least 30,000 BTUs rapidly heats up the water within the hot tub.
    Type: Application
    Filed: February 26, 2008
    Publication date: August 28, 2008
    Inventor: Paul E. West
  • Patent number: 7253408
    Abstract: An environmental cell for use with a scanning probe microscope includes a cell chamber, a probe mounted to the cell chamber, a puck selectively connected to the cell chamber, a sample holder selectively inserted in the puck, and a translation mechanism coupled to the sample holder to move the sample holder. Gasses or liquids may be introduced to the environmental cell through channels formed in either the puck, sample holder, or cell chamber.
    Type: Grant
    Filed: August 31, 2004
    Date of Patent: August 7, 2007
    Inventor: Paul E. West
  • Patent number: 5510615
    Abstract: The scanning probe microscope translation apparatus includes a scanning probe microscope for examining a specimen, with a specimen stage for mounting the specimen for examination by the scanning probe microscope, and a first translator mounted to the scanning probe microscope for translating the specimen stage relative to the scanning probe microscope. A support frame is dimensioned and adapted to be mounted in a specimen chamber of a scanning electron microscope, and a second translator is provided for scanning the scanning probe microscope relative to the support frame. The second translator is mounted on dual mass plates provided for isolating the scanning probe microscope from external vibrations, and suspension device are provided for suspending the mass plates from the support frame. A vacuum load lock system permits moving the scanning probe microscope, specimen stage, first translator, and mounting assembly into and out of the vacuum of the scanning electron microscope vacuum chamber.
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: April 23, 1996
    Assignee: Topometrix Corporation
    Inventors: Huddee Ho, Paul E. West
  • Patent number: 5507179
    Abstract: The synchronous sampling scanning force microscope includes a reflective cantilever arm having a free end which is oscillated at a frequency different from the resonance frequency of the cantilever arm. The motion of the oscillating cantilever arm is measured, to generate a deflection signal indicative of the amplitude of deflection or phase shift of the cantilever arm. Selected portions of cycles of the output signal are sampled, for generating output signal data indicative of deflection of the near and far excursions of the probe. The method and apparatus permit monitoring of compliance of the surface of the specimen by multiple sampling at a rate greater than the period of oscillation of the cantilever probe of the microscope.
    Type: Grant
    Filed: December 21, 1994
    Date of Patent: April 16, 1996
    Assignee: Topometrix
    Inventors: Ronald C. Gamble, Paul E. West, Marc R. Schuman
  • Patent number: 5455420
    Abstract: The scanning probe microscope translation apparatus includes a scanning probe microscope for examining a specimen, with a specimen stage for mounting the specimen for examination by the scanning probe microscope, and a first translator mounted to the scanning probe microscope for translating the specimen stage relative to the scanning probe microscope. A support frame is dimensioned and adapted to be mounted in a specimen chamber of a scanning electron microscope, and a second translator is provided for scanning the scanning probe microscope relative to the support frame. The second translator is mounted on dual mass plates provided for isolating the scanning probe microscope from external vibrations, and suspension O-rings are provided for suspending the mass plates from the support frame. A vacuum load lock system permits moving the scanning probe microscope, specimen stage, first translator, and mounting assembly into and out of the vacuum of the scanning electron microscope vacuum chamber.
    Type: Grant
    Filed: July 12, 1994
    Date of Patent: October 3, 1995
    Assignee: Topometrix
    Inventors: Huddee Ho, Paul E. West
  • Patent number: 5441343
    Abstract: The scanning thermal probe microscope measures a thermal parameter such as thermal conductivity or temperature of surface contours of a specimen with a thermal sensor maintained in thermal communication with the surface of the specimen and maintained at a temperature different than that of the specimen. The thermal sensor is disposed on the free end of a cantilever arm in thermal communication with the probe. A thermal feedback bridge circuit can maintain the thermal sensor at a constant temperature by heating or cooling the sensor, and provides a signal for determining the heat transfer between the probe and the specimen. The cantilever arm includes first and second legs of electrically conductive material, and the thermal sensor comprises a narrowed portion of the conducting material having a relatively high temperature coefficient of resistance.
    Type: Grant
    Filed: September 27, 1993
    Date of Patent: August 15, 1995
    Assignee: Topometrix Corporation
    Inventors: Russell J. Pylkki, Marc Schuman, Paul E. West
  • Patent number: 5406832
    Abstract: The synchronous sampling scanning force microscope includes a reflective cantilever arm having a free end which is oscillated at a frequency different from the resonance frequency of the cantilever arm. The motion of the oscillating cantilever arm is measured, to generate a deflection signal indicative of the amplitude of deflection or phase shift of the cantilever arm. Selected portions of cycles of the output signal are sampled, for generating output signal data indicative of deflection of the near and far excursions of the probe. The method and apparatus permit monitoring of compliance of the surface of the specimen by multiple sampling at a rate greater than the period of oscillation of the cantilever probe of the microscope.
    Type: Grant
    Filed: July 2, 1993
    Date of Patent: April 18, 1995
    Assignee: Topometrix Corporation
    Inventors: Ronald C. Gamble, Paul E. West, Marc R. Schuman
  • Patent number: 5319960
    Abstract: The scanning force microscope is an improved free standing type scanning force microscope with integrated scanning drivers for examination of a wide range of sizes and weights of stationary specimens, with the capability of scanning a sample in contact with a fluid. The scanning force microscope also includes motorized driver legs for operating the approach of the optical lever arm and sensor head to the sample, to allow for automation of the approach of the sensor head to the specimen.
    Type: Grant
    Filed: March 6, 1992
    Date of Patent: June 14, 1994
    Assignee: Topometrix
    Inventors: Ronald C. Gamble, Paul E. West
  • Patent number: 5260622
    Abstract: The electromechanical translation apparatus includes a translation drive assembly having front and rear drive leg members coupled together with central extension piezoelectric members, and piezoelectric clamping members which clamp the drive leg members between opposing bearing members of a lower base. The translation drive assembly may directly carry an object for precise positioning of the object, or may carry an upper movable base which in turn may be translated along an axis perpendicular to the direction of movement along the lower base, so that an object placed upon the upper movable base can be precisely positioned.
    Type: Grant
    Filed: September 24, 1991
    Date of Patent: November 9, 1993
    Assignee: TopoMetrix Corporation
    Inventor: Paul E. West
  • Patent number: 5257024
    Abstract: The search position encoder includes a generally planar medium, a search probe and a device for moving the probe generally parallel to the surface of the planar medium, and indexing device for locating the actual position of the probe relative to a fixed location on the generally planar medium. A plurality of gratings consisting of alternating strips of conducting and non-conducting materials are arranged on or adjacent to the medium parallel to orthogonal axes of the medium, and a device for sensing the movement of the probe in a plane parallel to the gratings. The location of the probe may then be determined based upon the sensing of the passage of the probe relative to the gratings.
    Type: Grant
    Filed: February 20, 1990
    Date of Patent: October 26, 1993
    Assignee: Quan-Scan, Inc.
    Inventor: Paul E. West
  • Patent number: 4968914
    Abstract: The electromechanical translation apparatus includes a translation drive assembly driven by front and rear piezoelectric clamping members coupled together with central extension piezoelectric members, which negotiate an elongated stationary channel. The translation drive assembly may directly carry an object for precise linear positioning in one dimension, or may carry a movable channel which in turn may be translated along an axis perpendicular to the direction of the stationary channel, so that an object placed upon the movable channel can be precisely positioned in two dimensions.
    Type: Grant
    Filed: March 24, 1989
    Date of Patent: November 6, 1990
    Assignee: Quanscan, Inc.
    Inventors: Paul E. West, Arthur Young
  • Patent number: 4956817
    Abstract: A high density computer memory which utilizes a probe operating with two degrees of freedom over a memory area, the probe location altered by drive systems incorporating piezoelectric elements arranged to drive the probe parallel to the plane of the memory surface. Sensors to provide an indication of the location of the probe independent of the drive system are provided. The memory system incorporates an underlying substrate upon which is deposited one of a variety of elements or compounds chosen to effect a change in physical-chemical properties when a data bit is written on the surface. The probe is moved over the surface at a distance which produces a current from Schottky or Field effect.
    Type: Grant
    Filed: May 26, 1988
    Date of Patent: September 11, 1990
    Assignee: QuanScan, Inc.
    Inventors: Paul E. West, Jamshid Jahanmir
  • Patent number: 4952857
    Abstract: The scanning micromechanical probe control system for controlling relative movement between a sensor probe and an adjacent sample surface includes a sensor probe for measuring a parameter which varies relative to the relative positioning of the probe and the adjacent surface adapted to generate an error signal indicating one of at least two discrete position conditions; an up/down counter for integrating the error signal and for generating an up/down count signal; and a position control servo for controlling the relative positioning of the probe and the surface responsive to the up/down count signal. An adaptive feedback control most preferably controls the rate of up/down positioning of the sensor probe and the rate of raster scanning of the probe relative to the target surface.
    Type: Grant
    Filed: March 24, 1989
    Date of Patent: August 28, 1990
    Assignee: QuanScan, Inc.
    Inventors: Paul E. West, Wilfred P. Charette, Arthur Young