Patents by Inventor Paul Eide

Paul Eide has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8759803
    Abstract: Ion implant apparatus using a drum-type scan wheel holds wafers with a total cone angle less than 60°. A collimated scanned beam of ions, for example H+, is directed along a final beam path which is at an angle of at least 45° to the axis of rotation of the scan wheel. Ions are extracted from a source and accelerated along a linear acceleration path to a high implant energy (more than 500 keV) before scanning or mass analysis. The mass analyzer may be located near the axis of rotation and unwanted ions are directed to an annular beam dump which may be mounted on the scan wheel.
    Type: Grant
    Filed: January 16, 2014
    Date of Patent: June 24, 2014
    Assignee: GTAT Corporation
    Inventors: Theodore Smick, Geoffrey Ryding, Hilton Glavish, Takao Sakase, William Park, Jr., Paul Eide, Drew Arnold, Ronald Horner, Joseph Gillespie
  • Publication number: 20140130741
    Abstract: Ion implant apparatus using a drum-type scan wheel holds wafers with a total cone angle less than 60°. A collimated scanned beam of ions, for example H+, is directed along a final beam path which is at an angle of at least 45° to the axis of rotation of the scan wheel. Ions are extracted from a source and accelerated along a linear acceleration path to a high implant energy (more than 500 keV) before scanning or mass analysis. The mass analyzer may be located near the axis of rotation and unwanted ions are directed to an annular beam dump which may be mounted on the scan wheel.
    Type: Application
    Filed: January 16, 2014
    Publication date: May 15, 2014
    Applicant: GTAT CORPORATION
    Inventors: Theodore Smick, Geoffrey Ryding, Hilton Glavish, Takao Sakase, William Park, JR., Paul Eide, Drew Arnold, Ronald Horner, Joseph Gillespie
  • Patent number: 8723452
    Abstract: A d. c. charged particle accelerator comprises accelerator electrodes separated by insulating spacers defining acceleration gaps between adjacent pairs of electrodes. Individually regulated gap voltages are applied across each adjacent pair of accelerator electrodes. In an embodiment, direct connections are provided to gap electrodes from the stage points of a multistage Cockcroft Walton type voltage multiplier circuit. The described embodiment enables an ion beam to be accelerated to high energies and high beam currents, with good accelerator stability.
    Type: Grant
    Filed: July 20, 2011
    Date of Patent: May 13, 2014
    Assignee: GTAT Corporation
    Inventors: Geoffrey Ryding, Steven Richards, Paul Eide, Theodore H. Smick, Malcolm Barnett
  • Patent number: 8633458
    Abstract: Ion implant apparatus using a drum-type scan wheel holds wafers with a total cone angle less than 60°. A collimated scanned beam of ions, for example H+, is directed along a final beam path which is at an angle of at least 45° to the axis of rotation of the scan wheel. Ions are extracted from a source and accelerated along a linear acceleration path to a high implant energy (more than 500 keV) before scanning or mass analysis. The mass analyzer may be located near the axis of rotation and unwanted ions are directed to an annular beam dump which may be mounted on the scan wheel.
    Type: Grant
    Filed: November 15, 2011
    Date of Patent: January 21, 2014
    Assignee: GTAT Corporation
    Inventors: Theodore Smick, Geoffrey Ryding, Hilton Glavish, Takao Sakase, William Park, Jr., Paul Eide, Drew Arnold, Ronald Horner, Joseph Gillespie
  • Publication number: 20130119263
    Abstract: Ion implant apparatus using a drum-type scan wheel holds wafers with a total cone angle less than 60°. A collimated scanned beam of ions, for example H+, is directed along a final beam path which is at an angle of at least 45° to the axis of rotation of the scan wheel. Ions are extracted from a source and accelerated along a linear acceleration path to a high implant energy (more than 500 keV) before scanning or mass analysis. The mass analyzer may be located near the axis of rotation and unwanted ions are directed to an annular beam dump which may be mounted on the scan wheel.
    Type: Application
    Filed: November 15, 2011
    Publication date: May 16, 2013
    Applicant: Twin Creeks Technologies, Inc.
    Inventors: Theodore Smick, Geoffrey Ryding, Hilton Glavish, Takao Sakase, William Park, JR., Paul Eide, Drew Arnold, Ronald Horner, Joseph Gillespie
  • Patent number: 8426829
    Abstract: An ion implanter has an implant wheel with a plurality of wafer carriers distributed about a periphery of the wheel. Each wafer carrier has a heat sink for removing heat from a wafer on the carrier during the implant process by thermal contact between the wafer and the heat sink. The wafer carriers have wafer retaining fences formed as cylindrical rollers with axes in the respective wafer support planes of the wafer carriers. The cylindrical surfaces of the rollers provide wafer abutment surfaces which can move transversely to the wafer support surfaces so that no transverse loading is applied by the fences to wafer edges as the wafer is pushed against the heat sink by centrifugal force. The wafer support surfaces comprise layers of elastomeric material and the movable abutment surfaces of the fences allow even thermal coupling with the heat sink over the whole area of the wafer.
    Type: Grant
    Filed: September 30, 2010
    Date of Patent: April 23, 2013
    Assignee: GTAT Corporation
    Inventors: William H Leavitt, Theodore H Smick, Joseph Daniel Gillespie, William H Park, Paul Eide, Drew Arnold, Geoffrey Ryding
  • Publication number: 20130056655
    Abstract: An apparatus and a method of ion implantation using a rotary scan assembly having an axis of rotation and a periphery. A plurality of substrate holders is distributed about the periphery, and the substrate holders are arranged to hold respective planar substrates. Each planar substrate has a respective geometric center on the periphery. A beam line assembly provides a beam of ions for implantation in the planar substrates on the holders. The beam line assembly is arranged to direct said beam along a final beam path.
    Type: Application
    Filed: September 7, 2011
    Publication date: March 7, 2013
    Applicant: TWIN CREEKS TECHNOLOGIES, INC.
    Inventors: Theodore Smick, Geoffrey Ryding, Takao Sakase, William Park, JR., Joseph Gillespie, Ronald Horner, Paul Eide
  • Patent number: 8378317
    Abstract: An apparatus and a method of ion implantation using a rotary scan assembly having an axis of rotation and a periphery. A plurality of substrate holders is distributed about the periphery, and the substrate holders are arranged to hold respective planar substrates. Each planar substrate has a respective geometric center on the periphery. A beam line assembly provides a beam of ions for implantation in the planar substrates on the holders. The beam line assembly is arranged to direct said beam along a final beam path.
    Type: Grant
    Filed: September 7, 2011
    Date of Patent: February 19, 2013
    Assignee: GTAT Corporation
    Inventors: Theodore Smick, Geoffrey Ryding, Takao Sakase, William Park, Jr., Joseph Gillespie, Ronald Horner, Paul Eide
  • Patent number: 8227768
    Abstract: An ion implantation system configured to produce an ion beam is provided, wherein an end station has a robotic architecture having at least four degrees of freedom. An end effector operatively coupled to the robotic architecture selectively grips and translates a workpiece through the ion beam. The robotic architecture has a plurality of motors operatively coupled to the end station, each having a rotational shaft. At least a portion of each rotational shaft generally resides within the end station, and each of the plurality of motors has a linkage assembly respectively associated therewith, wherein each linkage assembly respectively has a crank arm and a strut. The crank arm of each linkage assembly is fixedly coupled to the respective rotational shaft, and the strut of each linkage assembly is pivotally coupled to the respective crank arm at a first joint, and pivotally coupled to the end effector at a second joint.
    Type: Grant
    Filed: June 18, 2009
    Date of Patent: July 24, 2012
    Assignee: Axcelis Technologies, Inc.
    Inventors: Theodore Smick, Geoffrey Ryding, Ronald F. Horner, Paul Eide, Marvin Farley, Kan Ota
  • Publication number: 20120146555
    Abstract: A d. c. charged particle accelerator comprises accelerator electrodes separated by insulating spacers defining acceleration gaps between adjacent pairs of electrodes. Individually regulated gap voltages are applied across each adjacent pair of accelerator electrodes. In an embodiment, direct connections are provided to gap electrodes from the stage points of a multistage Cockcroft Walton type voltage multiplier circuit. The described embodiment enables an ion beam to be accelerated to high energies and high beam currents, with good accelerator stability.
    Type: Application
    Filed: July 20, 2011
    Publication date: June 14, 2012
    Applicant: TWIN CREEKS TECHNOLOGIES, INC.
    Inventors: Geoffrey Ryding, Steven Richards, Paul Eide, Theodore H. Smick, Malcolm Barnett
  • Patent number: 8168941
    Abstract: An ion beam angle calibration and emittance measurement system, comprising a plate comprising an elongated slit therein, wherein the elongated slit positioned at a rotation center of the plate and configured to allow a first beam portion to pass therethrough. A beam current detector located downstream of the plate, wherein the beam current detector comprises a slit therein configured to permit a second beam portion of the first beam portion to pass therethrough, wherein the beam current detector is configured to measure a first beam current associated with the first beam portion. A beam angle detector is located downstream of the beam current detector and configured to detect a second beam current associated with the second beam portion. The plate, the current beam detector and the beam angle detector are configured to collectively rotate about the rotation center of the plate.
    Type: Grant
    Filed: January 22, 2009
    Date of Patent: May 1, 2012
    Assignee: Axcelis Technologies, Inc.
    Inventors: Marvin Farley, Donald Polner, Geoffrey Ryding, Theodore Smick, Takao Sakase, Ronald Horner, Edward Eisner, Paul Eide, Brian Freer, Mark Lambert, Donovan Beckel
  • Publication number: 20110073781
    Abstract: An ion implanter has an implant wheel with a plurality of wafer carriers distributed about a periphery of the wheel. Each wafer carrier has a heat sink for removing heat from a wafer on the carrier during the implant process by thermal contact between the wafer and the heat sink. The wafer carriers have wafer retaining fences formed as cylindrical rollers with axes in the respective wafer support planes of the wafer carriers. The cylindrical surfaces of the rollers provide wafer abutment surfaces which can move transversely to the wafer support surfaces so that no transverse loading is applied by the fences to wafer edges as the wafer is pushed against the heat sink by centrifugal force. The wafer support surfaces comprise layers of elastomeric material and the movable abutment surfaces of the fences allow even thermal coupling with the heat sink over the whole area of the wafer.
    Type: Application
    Filed: September 30, 2010
    Publication date: March 31, 2011
    Applicant: TWIN CREEKS TECHNOLOGIES, INC.
    Inventors: William H. Leavitt, Theodore H. Smick, Joseph Daniel Gillespie, William H. Park, Paul Eide, Drew Arnold, Geoffrey Ryding
  • Publication number: 20100181470
    Abstract: An ion beam angle calibration and emittance measurement system, comprising a plate comprising an elongated slit therein, wherein the elongated slit positioned at a rotation center of the plate and configured to allow a first beam portion to pass therethrough. A beam current detector located downstream of the plate, wherein the beam current detector comprises a slit therein configured to permit a second beam portion of the first beam portion to pass therethrough, wherein the beam current detector is configured to measure a first beam current associated with the first beam portion. A beam angle detector is located downstream of the beam current detector and configured to detect a second beam current associated with the second beam portion. The plate, the current beam detector and the beam angle detector are configured to collectively rotate about the rotation center of the plate.
    Type: Application
    Filed: January 22, 2009
    Publication date: July 22, 2010
    Applicant: Axcelis Technologies, Inc.
    Inventors: Marvin Farley, Donald Polner, Geoffrey Ryding, Theodore Smick, Takao Sakase, Ronald Horner, Edward Eisner, Paul Eide, Brian Freer, Mark Lambert, Donovan Beckel
  • Publication number: 20090321631
    Abstract: An ion implantation system configured to produce an ion beam is provided, wherein an end station has a robotic architecture having at least four degrees of freedom. An end effector operatively coupled to the robotic architecture selectively grips and translates a workpiece through the ion beam. The robotic architecture has a plurality of motors operatively coupled to the end station, each having a rotational shaft. At least a portion of each rotational shaft generally resides within the end station, and each of the plurality of motors has a linkage assembly respectively associated therewith, wherein each linkage assembly respectively has a crank arm and a strut. The crank arm of each linkage assembly is fixedly coupled to the respective rotational shaft, and the strut of each linkage assembly is pivotally coupled to the respective crank arm at a first joint, and pivotally coupled to the end effector at a second joint.
    Type: Application
    Filed: June 18, 2009
    Publication date: December 31, 2009
    Applicant: Axcelis Technologies, Inc.
    Inventors: Theodore Smick, Geoffrey Ryding, Ronald F. Horner, Paul Eide, Marvin Farley, Kan Ota