Patents by Inventor Paul F. Baldasaro

Paul F. Baldasaro has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7790978
    Abstract: This invention relates to the field of thermophotovoltaic (TPV) direct energy conversion. In particular, TPV systems use filters to minimize parasitic absorption of below bandgap energy. This invention constitutes a novel combination of front surface filters to increase TPV conversion efficiency by reflecting useless below bandgap energy while transmitting a very high percentage of the useful above bandgap energy. In particular, a frequency selective surface is used in combination with an interference filter. The frequency selective surface provides high transmission of above bandgap energy and high reflection of long wavelength below bandgap energy. The interference filter maintains high transmission of above bandgap energy and provides high reflection of short wavelength below bandgap energy and a sharp transition from high transmission to high reflection.
    Type: Grant
    Filed: October 12, 2006
    Date of Patent: September 7, 2010
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventors: Randolph J. Dziendziel, Paul F. Baldasaro, David M. DePoy
  • Patent number: 6057506
    Abstract: A front-side or back-side illuminated variable current-voltage thermophotovoltaic device comprises a support substrate; isolation layers disposed on the support substrate; a plurality of cells disposed on the isolation layers, each of the cells including a base layer and an emitter layer; an insulating member disposed between each of the cells configured to isolate each cell from adjacent cells; an ohmic contact configured to connect each cell to another cell in series; and a spectral control device disposed on top of the cells and/or on the bottom surface of the support substrate.
    Type: Grant
    Filed: March 23, 1999
    Date of Patent: May 2, 2000
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventors: Greg W. Charache, Paul F. Baldasaro, Brian C. Campbell
  • Patent number: 6043426
    Abstract: A thermophotovoltaic (TPV) energy conversion semiconductor device is provided which incorporates a heavily doped n-type region and which, as a consequence, has improved TPV conversion efficiency. The thermophotovoltaic energy conversion device includes an emitter layer having first and second opposed sides and a base layer in contact with the first side of the emitter layer. A highly doped n-type cap layer is formed on the second side of the emitter layer or, in another embodiment, a heavily doped n-type emitter layer takes the place of the cap layer.
    Type: Grant
    Filed: February 19, 1999
    Date of Patent: March 28, 2000
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventors: David M. DePoy, Greg W. Charache, Paul F. Baldasaro
  • Patent number: 5959239
    Abstract: A thermovoltaic energy conversion device and related method for converting thermal energy into an electrical potential. An interference filter is provided on a semiconductor thermovoltaic cell to pre-filter black body radiation. The semiconductor thermovoltaic cell includes a P/N junction supported on a substrate which converts incident thermal energy below the semiconductor junction band gap into electrical potential. The semiconductor substrate is doped to provide a plasma filter which reflects back energy having a wavelength which is above the band gap and which is ineffectively filtered by the interference filter, through the P/N junction to the source of radiation thereby avoiding parasitic absorption of the unusable portion of the thermal radiation energy.
    Type: Grant
    Filed: June 2, 1997
    Date of Patent: September 28, 1999
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventor: Paul F. Baldasaro
  • Patent number: 5769964
    Abstract: A thermophotovoltaic energy conversion device and a method for making the device. The device includes a substrate formed from a bulk single crystal material having a bandgap (E.sub.g) of 0.4 eV<E.sub.g <0.7 eV and an emitter fabricated on the substrate formed from one of a p-type or an n-type material. Another thermophotovoltaic energy conversion device includes a host substrate formed from a bulk single crystal material and lattice-matched ternary or quaternary III-V semiconductor active layers.
    Type: Grant
    Filed: August 29, 1996
    Date of Patent: June 23, 1998
    Assignee: The United States of America as reprresented by the United States Department of Energy
    Inventors: Greg W. Charache, Paul F. Baldasaro, Greg J. Nichols
  • Patent number: 5753050
    Abstract: A thermophotovoltaic device and a method for making the thermophotovoltaic device. The device includes an n-type semiconductor material substrate having top and bottom surfaces, a tunnel junction formed on the top surface of the substrate, a region of active layers formed on top of the tunnel junction and a back surface reflector (BSR). The tunnel junction includes a layer of heavily doped n-type semiconductor material that is formed on the top surface of the substrate and a layer of heavily doped p-type semiconductor material formed on the n-type layer. An optional pseudomorphic layer can be formed between the n-type and p-type layers. A region of active layers is formed on top of the tunnel junction. This region includes a base layer of p-type semiconductor material and an emitter layer of n-type semiconductor material. An optional front surface window layer can be formed on top of the emitter layer.
    Type: Grant
    Filed: August 29, 1996
    Date of Patent: May 19, 1998
    Assignee: The United States of America as represented by the Department of Energy
    Inventors: Greg W. Charache, Paul F. Baldasaro, James L. Egley
  • Patent number: 5700332
    Abstract: A filter system to transmit short wavelength radiation and reflect long wavelength radiation for a thermophotovoltaic energy conversion cell comprises an optically transparent substrate segregation layer with at least one coherent wavelength in optical thickness; a dielectric interference filter deposited on one side of the substrate segregation layer, the interference filter being disposed toward the source of radiation, the interference filter including a plurality of alternating layers of high and low optical index materials adapted to change from transmitting to reflecting at a nominal wavelength .lambda..sub.IF approximately equal to the bandgap wavelength .lambda..sub.g of the thermophotovoltaic cell, the interference filter being adapted to transmit incident radiation from about 0.5.lambda..sub.IF to .lambda..sub.IF and reflect from .lambda..sub.IF to about 2.lambda..sub.
    Type: Grant
    Filed: July 11, 1996
    Date of Patent: December 23, 1997
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventors: Edward J. Brown, Paul F. Baldasaro, Randolph J. Dziendziel
  • Patent number: 5403405
    Abstract: In the present invention, a thermophotovoltaic electric power generator is described. It contains low bandgap photovoltaic cells sensitive in the infrared out to at least 1.7 microns and a broadband infrared emitter with a shortpass IR filter located between the cells and the emitter to recycle the nonuseful IR back to the emitter. Several specific IR filter designs as well as filter/cell and filter/emitter combinations are described all of which improve the overall generator conversion efficiency.
    Type: Grant
    Filed: December 22, 1993
    Date of Patent: April 4, 1995
    Assignee: JX Crystals, Inc.
    Inventors: Lewis M. Fraas, John E. Samaras, Paul F. Baldasaro, Edward J. Brown
  • Patent number: H1856
    Abstract: A method for fabricating a thermophotovoltaic energy conversion cell including a thin semiconductor wafer substrate (10) having a thickness (.beta.) calculated to decrease the free carrier absorption on a heavily doped substrate; wherein the top surface of the semiconductor wafer substrate is provided with a thermophotovoltaic device (11), a metallized grid (12) and optionally an antireflective (AR) overcoating; and, the bottom surface (10') of the semiconductor wafer substrate (10) is provided with a highly reflecting coating which may comprise a metal coating (14) or a combined dielectric/metal coating (17).
    Type: Grant
    Filed: October 30, 1996
    Date of Patent: September 5, 2000
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventors: Paul F Baldasaro, Edward J Brown, Greg W Charache, David M DePoy