Patents by Inventor Paul F. Keusenkothen

Paul F. Keusenkothen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20110000819
    Abstract: A process, apparatus and system for forming light olefins, the process including heating a resid-containing hydrocarbon feedstock containing at least 10 ppmw of metals to vaporize at least 90 wt. % of said hydrocarbon feedstock; separating in a knockout drum a hydrocarbon vapor portion having less than 10 ppmw metals from a non-vaporized resid-containing portion; and feeding said hydrocarbon vapor to a catalytic cracking process to form light olefins.
    Type: Application
    Filed: July 1, 2009
    Publication date: January 6, 2011
    Inventor: Paul F. Keusenkothen
  • Patent number: 7846324
    Abstract: The invention relates to a process for upgrading tar using a heat exchanger in series with a vapor/liquid separator to separate tar into a heavy tar asphaltenic material and a deasphalted tar material.
    Type: Grant
    Filed: January 31, 2008
    Date of Patent: December 7, 2010
    Assignee: Exxonmobil Chemical Patents Inc.
    Inventors: Subramanian Annamalai, Paul F. Keusenkothen, Alok Srivastava, James N. McCoy
  • Publication number: 20100292523
    Abstract: In one aspect, the invention includes a reactor apparatus for pyrolyzing a hydrocarbon feedstock, the apparatus including: a reactor component comprising a refractory material in oxide form, the refractory material having a melting point of at least 2060° C. and which remains in oxide form when exposed to a gas having an oxygen partial pressure of 10?15 bar, a carbon partial pressure above the carbon partial pressure of the zirconium carbide and zirconium oxide phase transition at the same temperature, and at temperatures below the temperature of the zirconium triple point at the oxygen partial pressure of 10?15 bar; and ii) when exposed to a gas having an oxygen partial pressure of 10?15 bar and at temperatures above the zirconium triple point at the oxygen partial pressure of 10?15 bar. In some embodiments, the reactor comprises a regenerative pyrolysis reactor apparatus and in other embodiments it includes a reverse flow regenerative reactor apparatus.
    Type: Application
    Filed: May 3, 2010
    Publication date: November 18, 2010
    Inventors: Frank Hershkowitz, ChangMin Chun, Paul F. Keusenkothen, Shiun Ling, Gary David Mohr
  • Publication number: 20100288617
    Abstract: In one aspect, the invention includes a reactor apparatus for pyrolyzing a hydrocarbon feedstock, the apparatus including: a reactor component comprising a refractory material in oxide form, the refractory material having a melting point of at least 2060° C. and which remains in oxide form when exposed to a gas having carbon partial pressure of 10?22 bar, an oxygen partial pressure of 10?10 bar, at a temperature of 1200° C. In some embodiments, the reactor comprises a regenerative pyrolysis reactor apparatus and in other embodiments it includes a reverse flow regenerative reactor apparatus. In other aspects, this invention includes a method for pyrolyzing a hydrocarbon feedstock using a pyrolysis reactor system comprising the step of providing in a heated region of a pyrolysis reactor system for pyrolyzing a hydrocarbon feedstock, apparatus comprising a refractory material in oxide form, the refractory material having a melting point of at least 2060° C.
    Type: Application
    Filed: October 8, 2009
    Publication date: November 18, 2010
    Inventors: Frank Hershkowitz, ChangMin Chun, Paul F. Keusenkothen, Shiun Ling, Gary David Mohr
  • Patent number: 7815791
    Abstract: A process and apparatus are provided for steam cracking heavy feeds, including steam cracked tars. The invention heats a steam cracked tar feed to provide a depolymerized steam cracked tar containing lower boiling molecules than the steam cracked tar feed, hydrogenates the depolymerized steam cracked tar using a hydrogenating catalyst, e.g., a downward flow fixed bed hydrotreater, to provide a hydrogenated steam cracked tar. At least a portion of the hydrogenated steam cracked tar is steam cracked in a steam cracking furnace comprising a convection zone and a radiant zone.
    Type: Grant
    Filed: April 30, 2008
    Date of Patent: October 19, 2010
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventor: Paul F. Keusenkothen
  • Patent number: 7744743
    Abstract: A feedstream comprising tar is fed to a solvent deasphalter wherein it is contacted with a deasphalting solvent or fluid to produce a composition comprising a mixture or slurry of solvent containing a soluble portion of the tar, and a heavy tar fraction comprising the insoluble portion of the tar. These fractions may be separated in the deasphalter apparatus, such as by gravity settling wherein the heavy tar fraction is taken off as bottoms, and the solvent-soluble fraction taken as overflow or overheads with the solvent. The overflow or overheads is sent to a solvent recovery unit, such as a distillation apparatus, wherein solvent is recovered as overheads and a deasphalted tar fraction is taken off as a sidestream or bottoms. The solvent or a portion thereof, recovered as overheads, may be then be recycled to the solvent deasphalter, or in a preferred embodiment, at least a portion of the solvent is steam cracked to produce a product comprising light olefins.
    Type: Grant
    Filed: October 30, 2006
    Date of Patent: June 29, 2010
    Assignee: Exxonmobil Chemical Patents Inc.
    Inventors: James N. McCoy, Paul F. Keusenkothen, Alok Srivastava
  • Publication number: 20100130803
    Abstract: A process and apparatus are provided to produce acetylene from a feed stream of low hydrogen content hydrocarbons such as coal by: (a) blending the hydrocarbons with methane to provide a blended mixture containing at least about 12.5 wt % atomic hydrogen; (b) partially combusting the blended mixture in a reactor in the presence of a source of oxygen to provide a partially combusted mixture at or above a temperature sufficient to produce methyl radicals; (c) maintaining the partially combusted mixture at or above the temperature for a residence time sufficient to produce a product stream containing enhanced yields of acetylene without significant formation of coke or coke precursors; (d) cooling the product stream to reduce the temperature of the product stream within a time sufficiently brief to substantially arrest any cracking reactions and provide a cooled product stream; and (e) recovering acetylene from the cooled product stream.
    Type: Application
    Filed: November 25, 2008
    Publication date: May 27, 2010
    Inventors: Paul F. Keusenkothen, Frank Hershkowitz
  • Patent number: 7625480
    Abstract: The invention relates to a method for processing asphaltene-containing feed to a pyrolysis furnace by raising the final boiling point of the feed/steam mixture to the pyrolysis furnace to ensure fouling occurs lower in the convection section where the mixture of air and steam can burn off fouling deposits during decoking operations. The final boiling point of the feed stream is increased by adding a heavy essentially asphaltene-free high boiling point hydrocarbon to the feed stream before the feed stream enters the convection section of the pyrolysis furnace, whereby said fouling occurs lower in the convection section.
    Type: Grant
    Filed: May 11, 2006
    Date of Patent: December 1, 2009
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: David Beattie, Richard Charles Stell, James N. McCoy, Bryan Daniel McVicker, Paul F. Keusenkothen, Alok Srivastava, David Bleckinger
  • Patent number: 7615143
    Abstract: There is provided a catalyst composition having improved hydrothermal stability for the catalytic cracking of a hydrocarbon feedstock to selectively produce propylene. The catalyst composition comprises a first crystalline molecular sieve selected from the group consisting of IM-5, MWW, ITH, FER, MFS, AEL, and AFO and an effective amount of a stabilization metal (copper, zirconium, or mixtures thereof) exchanged into the molecular sieve. The catalyst finds application in the cracking of naphtha and heavy hydrocarbon feedstocks. When used in the catalytic cracking of heavier hydrocarbon feedstocks, the catalyst composition preferably comprises a second molecular sieve having a pore size that is greater than the pore size of the first molecular sieve. The process is carried out by contacting a feedstock containing hydrocarbons having at least 4 carbon atoms is contacted, under catalytic cracking conditions, with the catalyst composition.
    Type: Grant
    Filed: July 30, 2004
    Date of Patent: November 10, 2009
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Tan-Jen Chen, Paul F. Keusenkothen, J. Jason Wu, John Scott Buchanan, Guang Cao, Larry L. Iaccino, David L. Stern, Matthew J. Vincent
  • Publication number: 20090272671
    Abstract: A process and apparatus are provided for steam cracking heavy feeds, including steam cracked tars. The invention heats a steam cracked tar feed to provide a depolymerized steam cracked tar containing lower boiling molecules than the steam cracked tar feed, hydrogenates the depolymerized steam cracked tar using a hydrogenating catalyst, e.g., a downward flow fixed bed hydrotreater, to provide a hydrogenated steam cracked tar. At least a portion of the hydrogenated steam cracked tar is steam cracked in a steam cracking furnace comprising a convection zone and a radiant zone.
    Type: Application
    Filed: April 30, 2008
    Publication date: November 5, 2009
    Inventor: Paul F. Keusenkothen
  • Publication number: 20090242378
    Abstract: Tar is contacted with stripping agent, such as steam or tail gas, in a stripping tower. A product comprising deasphalted tar is recovered as overheads and a product comprising heavy tar is recovered as bottoms from the stripping tower.
    Type: Application
    Filed: June 10, 2009
    Publication date: October 1, 2009
    Inventors: SUBRAMANIAN ANNAMALAI, JAMES N. MCCOY, PAUL F. KEUSENKOTHEN
  • Publication number: 20090236264
    Abstract: A process for steam cracking liquid hydrocarbon feedstocks containing synthetic crude oil comprises i) hydroprocessing a wide boiling range aliquot containing a) normally liquid hydrocarbon portion substantially free of resids and b) thermally cracked hydrocarbon liquid, boiling in a range from about 600° to about 1050° F., to provide a synthetic crude oil substantially free of resids; ii) adding to the synthetic crude oil a normally liquid hydrocarbon component boiling in a range from about 100° to about 1050° F.; and iii) cracking the mixture resulting from ii) in a cracker furnace comprising a radiant coil outlet to provide a cracked effluent, wherein the cracking is carried out under conditions sufficient to effect a radiant coil outlet temperature which is greater than the optimum radiant coil outlet temperature for cracking the synthetic crude oil separately. A method for upgrading synthetic crude for use in cracking is also provided, as well as a feedstock for cracking.
    Type: Application
    Filed: June 5, 2009
    Publication date: September 24, 2009
    Inventors: Paul F. Keusenkothen, James N. McCoy, James Earl Graham, Chad David Reimann
  • Patent number: 7588737
    Abstract: A process for cracking hydrocarbon feedstock containing resid comprising: heating the feedstock, mixing the heated feedstock with a fluid and/or a primary dilution steam stream to form a mixture, flashing the mixture to form a vapor phase and a liquid phase which collect as bottoms and removing the liquid phase, separating and cracking the vapor phase, and cooling the product effluent, wherein the bottoms are maintained under conditions to effect at least partial visbreaking. The visbroken bottoms may be steam stripped to recover the visbroken molecules while avoiding entrainment of the bottoms liquid. An apparatus for carrying out the process is also provided.
    Type: Grant
    Filed: September 15, 2006
    Date of Patent: September 15, 2009
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Richard C. Stell, George J. Balinsky, James N. McCoy, Paul F. Keusenkothen
  • Patent number: 7563358
    Abstract: A hydrocarbon conversion process for producing an aromatics product containing of benzene, toluene, xylenes, or mixtures thereof. The process is carried out by converting precursors of benzene, toluene, and xylenes that are contained in a hydrocarbon feed (C6+ non-aromatic cyclic hydrocarbons, A8+ single-ring aromatic hydrocarbons having at least one alkyl group containing two or more carbon atoms; and A9+ single-ring aromatic hydrocarbons having at least three methyl groups) to produce a product that contains an increased amount of benzene, toluene, xylenes, or combinations thereof compared to said hydrocarbon feed.
    Type: Grant
    Filed: August 24, 2006
    Date of Patent: July 21, 2009
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Elizabeth L. Stavens, Stephen H. Brown, J. Scott Buchanan, Yun-Feng Chang, Larry L. Iaccino, Paul F. Keusenkothen, John D. Y. Ou, Randall D. Partridge
  • Patent number: 7563357
    Abstract: A process for steam cracking liquid hydrocarbon feedstocks containing synthetic crude oil comprises i) hydroprocessing a wide boiling range aliquot containing a) normally liquid hydrocarbon portion substantially free of resids and b) thermally cracked hydrocarbon liquid, boiling in a range from about 600° to about 1050° F., to provide a synthetic crude oil substantially free of resids; ii) adding to the synthetic crude oil a normally liquid hydrocarbon component boiling in a range from about 100° to about 1050° F.; and iii) cracking the mixture resulting from ii) in a cracker furnace comprising a radiant coil outlet to provide a cracked effluent, wherein the cracking is carried out under conditions sufficient to effect a radiant coil outlet temperature which is greater than the optimum radiant coil outlet temperature for cracking the synthetic crude oil separately. A method for upgrading synthetic crude for use in cracking is also provided, as well as a feedstock for cracking.
    Type: Grant
    Filed: January 26, 2007
    Date of Patent: July 21, 2009
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Paul F Keusenkothen, James N McCoy, James Earl Graham, Chad David Reimann
  • Patent number: 7560020
    Abstract: Tar is contacted with stripping agent, such as steam or tail gas, in a stripping tower. A product comprising deasphalted tar is recovered as overheads and a product comprising heavy tar is recovered as bottoms from the stripping tower.
    Type: Grant
    Filed: October 30, 2006
    Date of Patent: July 14, 2009
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Subramanian Annamalai, James N McCoy, Paul F Keusenkothen
  • Patent number: 7553460
    Abstract: A process for cracking hydrocarbon feedstock containing resid comprising: heating the feedstock, mixing the heated feedstock with a fluid and/or a primary dilution steam stream to form a mixture, flashing the mixture to form a vapor phase and a liquid phase which collect as bottoms and removing the liquid phase, separating and cracking the vapor phase, and cooling the product effluent.
    Type: Grant
    Filed: March 2, 2007
    Date of Patent: June 30, 2009
    Assignee: Exxonmobil Chemical Patents Inc.
    Inventors: Richard C. Stell, Jennifer L. Bancroft, Arthur R. Dinicolantonio, Subramanian Annamalai, James N. McCoy, Paul F. Keusenkothen, George Stephens, John R. Messinger, James Mitchell Frye, Nick G. Vidonic, George J. Balinsky
  • Publication number: 20090057200
    Abstract: This invention relates to a process of producing an upgraded product stream from steam cracker tar feedstream suitable for use in refinery or chemical plant processes or for utilization in fuel oil sales or blending. This process utilizes an ultrafiltration process for separating the steam cracker tar constituents resulting in a high recovery, low-energy process with improved separation and product properties.
    Type: Application
    Filed: October 30, 2007
    Publication date: March 5, 2009
    Inventors: Daniel P. Leta, Edward W. Corcoran, Eric B. Sirota, Stephen M. Cundy, Kirk C. Nadler, John Di-Yi Ou, Paul F. Keusenkothen
  • Publication number: 20090008292
    Abstract: In one aspect, the inventive process comprises a process for pyrolyzing a hydrocarbon feedstock containing nonvolatiles in a regenerative pyrolysis reactor system. The inventive process comprises: (a) heating the nonvolatile-containing hydrocarbon feedstock upstream of a regenerative pyrolysis reactor system to a temperature sufficient to form a vapor phase that is essentially free of nonvolatiles and a liquid phase containing the nonvolatiles; (b) separating said vapor phase from said liquid phase; (c) feeding the separated vapor phase to the pyrolysis reactor system; and (d) converting the separated vapor phase in said pyrolysis reactor system to form a pyrolysis product.
    Type: Application
    Filed: May 13, 2008
    Publication date: January 8, 2009
    Inventors: Paul F. Keusenkothen, James N. McCoy, Frank Hershkowitz
  • Publication number: 20080300438
    Abstract: In one aspect, the inventive process comprises a process for pyrolyzing a hydrocarbon feedstock containing nonvolatiles in a regenerative pyrolysis reactor system. The process comprises: (a) heating the nonvolatile-containing hydrocarbon feedstock upstream of a regenerative pyrolysis reactor system to a temperature sufficient to form a vapor phase that is essentially free of nonvolatiles and a liquid phase containing the nonvolatiles; (b) separating said vapor phase from said liquid phase; (c) feeding the separated vapor phase and methane to the pyrolysis reactor system; and (d) converting the methane and separated vapor phase in said pyrolysis reactor system to form a pyrolysis product. In another aspect, the invention includes a separation process that feeds multiple pyrolysis reactors.
    Type: Application
    Filed: May 15, 2008
    Publication date: December 4, 2008
    Inventors: Paul F. Keusenkothen, Frank Hershkowitz