Patents by Inventor Paul F. Keusenkothen

Paul F. Keusenkothen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180185830
    Abstract: The invention relates to long chain alcohol, to processes for catalytically producing long chain alcohol from carbon monoxide and molecular hydrogen, to equipment useful in such processes, and to the use of long chain alcohol, e.g., for producing fuel, lubricating oil, detergent, and plasticizer. The catalyst is mesoporous and comprises iron and copper.
    Type: Application
    Filed: February 26, 2018
    Publication date: July 5, 2018
    Inventors: Kapil Kandel, Paul F. Keusenkothen, Jeevan S. Abichandani
  • Publication number: 20180178199
    Abstract: The invention relates to templated active material, including those deriving order from organic and/or inorganic templating agents. The invention also relates to methods for producing templated active material, and to active material produced by such methods, and the use of such templated active material for producing oxygenate.
    Type: Application
    Filed: February 26, 2018
    Publication date: June 28, 2018
    Inventors: Kapil Kandel, Paul F. Keusenkothen, Jeevan S. Abichandani
  • Patent number: 9988325
    Abstract: The invention relates to the hydrocarbon upgrading to produce aromatic hydrocarbon, to equipment and materials useful in such upgrading, and to the use of such upgrading for, e.g., producing aromatic hydrocarbon natural gas. The upgrading can be carried out in the presence of a dehydrocyclization catalyst comprising at least one dehydrogenation component and at least one molecular sieve.
    Type: Grant
    Filed: August 18, 2016
    Date of Patent: June 5, 2018
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Paul F. Keusenkothen, John S. Buchanan, Samia Ilias, Mayank Shekhar
  • Patent number: 9969941
    Abstract: The invention relates to a process for converting hydrocarbons into unsaturated products such as acetylene and/or ethylene. The invention also relates to converting acetylene to olefins such as ethylene and/or propylene, to polymerizing the olefins, and to equipment useful for these processes.
    Type: Grant
    Filed: June 29, 2016
    Date of Patent: May 15, 2018
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Frank Hershkowitz, Paul F. Keusenkothen, Jeffrey W. Frederick, Richard J. Basile, John W. Fulton
  • Patent number: 9963641
    Abstract: The present techniques provide a pyrolysis process that is reduced in coke and/or tar formation relative to comparable processes. A flushing fluid is applied or injected directly into a pyrolysis reactor to reduce high levels of coke and tar that can accumulate within the pyrolysis reactor during pyrolysis of the feed.
    Type: Grant
    Filed: April 9, 2012
    Date of Patent: May 8, 2018
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventor: Paul F. Keusenkothen
  • Patent number: 9963406
    Abstract: The invention relates to the conversion of paraffinic hydrocarbon to oligomers of greater molecular weight and/or to aromatic hydrocarbon. The invention also relates to equipment and materials useful in such conversion, and to the use of such conversion for, e.g., natural gas upgrading. Corresponding olefinic hydrocarbon is produced from the paraffinic hydrocarbon in the presence of a dehydrogenation catalyst containing a catalytically active carbonaceous component. The corresponding olefinic hydrocarbon is then converted by oligomerization and/or dehydrocyclization in the presence of at least one molecular sieve catalyst.
    Type: Grant
    Filed: August 18, 2016
    Date of Patent: May 8, 2018
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Tan-Jen Chen, Paul F. Keusenkothen
  • Patent number: 9957206
    Abstract: This disclosure relates to the conversion of methane to higher molecular weight (C5+) hydrocarbon, including aromatic hydrocarbon, to materials and equipment useful in such conversion, and to the use of such conversion for, e.g., natural gas upgrading.
    Type: Grant
    Filed: May 12, 2017
    Date of Patent: May 1, 2018
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Paul F. Keusenkothen, Juan D. Henao, Abhimanyu O. Patil, Guang Cao
  • Patent number: 9957203
    Abstract: A catalyst system and processes for combined aromatization and selective hydrogen combustion of oxygenated hydrocarbons are disclosed. The catalyst system contains at least one aromatization component and at least one selective hydrogen combustion component. The process is such that the yield of hydrogen is less than the yield of hydrogen when contacting the hydrocarbons with the aromatization component alone.
    Type: Grant
    Filed: October 7, 2015
    Date of Patent: May 1, 2018
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Paul F. Keusenkothen, Seth M. Washburn, Neeraj Sangar, Nikolaos Soultanidis, Mayank Shekhar
  • Patent number: 9957204
    Abstract: The invention relates to processes for converting a mixture of hydrocarbon and sulfur-containing molecules such as mercaptan into products comprising acetylene, ethylene, and hydrogen sulfide, to processes utilizing the acetylene and ethylene resulting from the conversion, and to equipment useful for such processes.
    Type: Grant
    Filed: October 25, 2016
    Date of Patent: May 1, 2018
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Paul F. Keusenkothen, Frank Hershkowitz, Robert D. Denton, Gary D. Mohr
  • Patent number: 9950971
    Abstract: A process and catalyst for use therein for the production of aromatics via the oxidative coupling of methane and methane co-aromatization with higher hydrocarbons in a single reaction stage. First, methane is partially converted to ethane and ethylene on an OCM catalyst component, and the OCM intermediate mixture containing methane, ethane and ethylene is subsequently converted into aromatics on an aromatization catalyst component. The reaction may be conducted at 550-850° C. and at about 50 psig. The claimed process and catalyst used therein achieves high methane conversion at lower temperatures (less than 800° C.), higher methane conversion into the aromatic products and significant reductions in production cost when compared to the traditional two (or more) step processes.
    Type: Grant
    Filed: June 12, 2015
    Date of Patent: April 24, 2018
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Juan D. Henao, Paul F. Keusenkothen, Abhimanyu O. Patil
  • Patent number: 9931621
    Abstract: The invention relates to long chain alcohol, to processes for catalytically producing long chain alcohol from carbon monoxide and molecular hydrogen, to equipment useful in such processes, and to the use of long chain alcohol, e.g., for producing fuel, lubricating oil, detergent, and plasticizer. The catalyst is mesoporous and comprises iron and copper.
    Type: Grant
    Filed: May 4, 2016
    Date of Patent: April 3, 2018
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Kapil Kandel, Paul F. Keusenkothen, Jeevan S. Abichandani
  • Patent number: 9931616
    Abstract: The invention relates to templated active material, including those deriving order from organic and/or inorganic templating agents. The invention also relates to methods for producing templated active material, and to active material produced by such methods, and the use of such templated active material for producing oxygenate.
    Type: Grant
    Filed: May 4, 2016
    Date of Patent: April 3, 2018
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Kapil Kandel, Paul F. Keusenkothen, Jeevan S. Abichandani
  • Publication number: 20180022667
    Abstract: The invention relates to converting non-aromatic hydrocarbon in the presence of CO2 to produce aromatic hydrocarbon. CO2 methanation using molecular hydrogen produced during the aromatization increases aromatic hydrocarbon yield. The invention also relates to equipment and materials useful in such upgrading, to processes for carrying out such upgrading, and to the use of such processes for, e.g., natural gas upgrading.
    Type: Application
    Filed: September 12, 2017
    Publication date: January 25, 2018
    Inventors: John S. Buchanan, Paul F. Keusenkothen, David W. Maher, Jaime A. Valencia
  • Patent number: 9868680
    Abstract: An apparatus and method are provided for processing hydrocarbon feeds. The method enhances the conversion of hydrocarbon feeds into conversion products, such as ethylene and propylene. In particular, the present techniques utilize a high-severity reactor integrated with another reactor type to convert hydrocarbons to other petrochemical products.
    Type: Grant
    Filed: December 20, 2011
    Date of Patent: January 16, 2018
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Paul F. Keusenkothen, Frank Hershkowitz, Jason D. Davis
  • Patent number: 9845272
    Abstract: The invention relates to the conversion of light hydrocarbon to higher-value hydrocarbon, such as aromatic hydrocarbon, to equipment and materials useful in such conversion, and to the use of such conversion for, e.g., natural gas upgrading. The conversion can be carried out in two stages, with each stage containing a dehydrocyclization catalyst comprising at least one dehydrogenation component and at least one molecular sieve.
    Type: Grant
    Filed: August 18, 2016
    Date of Patent: December 19, 2017
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: John S. Buchanan, Samia Ilias, Mayank Shekhar, Paul F. Keusenkothen
  • Publication number: 20170342005
    Abstract: The invention relates to processes for oxygenate synthesis and homologation, to equipment and materials useful in such processes, and to the use of such oxygenate for producing olefin and polyolefin.
    Type: Application
    Filed: April 26, 2017
    Publication date: November 30, 2017
    Inventors: Monica D. Lotz, Paul F. Keusenkothen, Michael Salciccioli
  • Patent number: 9828308
    Abstract: This invention relates to the conversion of substantially-saturated hydrocarbon to higher-value hydrocarbon products such as aromatics and/or oligomers, to equipment and materials useful in such conversion, and to the use of such conversion for, e.g., natural gas upgrading.
    Type: Grant
    Filed: May 12, 2017
    Date of Patent: November 28, 2017
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Juan D. Henao, Paul F. Keusenkothen, Abhimanyu O. Patil
  • Patent number: 9815751
    Abstract: The invention relates to hydrocarbon conversion processes, e.g., to processes for producing acetylene from hydrocarbon and then hydrogenating at least a portion of the acetylene. The invention also relates to polymerizing one or more products derived from the acetylene saturation, and to equipment useful for these processes.
    Type: Grant
    Filed: December 20, 2011
    Date of Patent: November 14, 2017
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Paul F. Keusenkothen, Frank Hershkowitz
  • Patent number: 9815919
    Abstract: The invention relates to a process for converting hydrocarbons into products containing aldehydes and/or alcohols. The invention also relates to producing olefins from the aldehyde and alcohol, to polymerizing the olefins, and to equipment useful for these processes.
    Type: Grant
    Filed: April 15, 2016
    Date of Patent: November 14, 2017
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Paul F. Keusenkothen, Frank Hershkowitz
  • Patent number: 9815749
    Abstract: The invention relates to the production of aromatic hydrocarbon by the conversion of a feed comprising saturated hydrocarbon. At least a portion of the saturated hydrocarbon is converted to olefinic hydrocarbon. Aromatic hydrocarbon is produced from at least a portion of the olefinic hydrocarbon using at least one dehydrocyclization catalyst comprising dehydrogenation and molecular sieve components.
    Type: Grant
    Filed: August 18, 2016
    Date of Patent: November 14, 2017
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Paul F. Keusenkothen, Mohsen N. Harandi, John S. Buchanan, Mayank Shekhar