Patents by Inventor Paul F. Mutolo

Paul F. Mutolo has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220344691
    Abstract: The present invention provides, in a first aspect, an electrical generation system which includes an electrolyzer and a fuel cell system. The electrolyzer is coupled to a source of water and a power source. The electrolyzer is configured to generate oxygen and hydrogen utilizing water from the water source and electrical power from the power source. The fuel cell system is coupled to the electrolyzer to receive a flow of the hydrogen from the electrolyzer at an anode thereof. The fuel cell system includes a cathode having a cathode chamber coupled to a source of ambient air. The cathode chamber is coupled to the electrolyzer to selectively allow a flow of the oxygen from the electrolyzer to the cathode chamber and to selectively allow a flow of air from the source of ambient air to the cathode chamber. The fuel cell system is configured to generate electricity in a fuel cell reaction utilizing the hydrogen and the oxygen.
    Type: Application
    Filed: April 26, 2021
    Publication date: October 27, 2022
    Applicant: STANDARD HYDROGEN CORPORATION
    Inventors: Paul F. MUTOLO, William W. DAILEY, Gary P. STOTTLER, Daniel B. O'CONNELL
  • Patent number: 7416798
    Abstract: Apparatus and methods for the generation of water in a direct oxidation fuel cell. Water, in addition to carbon dioxide and heat, is produced when carbonaceous fuel or fuel solution is oxidized in the presence of air and a suitable catalyst. This oxidation reaction is performed on a surface that allows for the introduction of oxygen in the presence of a catalyst. Water produced can then be directly added to the fuel solution thereby diluting the fuel solution to a desired concentration, or may be separately and then later added to fuel solution for the normal fuel cell operations depending on the permeability of the membrane to water.
    Type: Grant
    Filed: March 6, 2002
    Date of Patent: August 26, 2008
    Assignee: MTI MicroFuel Cells, Inc.
    Inventors: Gerhard Beckmann, Paul F. Mutolo, William W. Dailey
  • Patent number: 7179501
    Abstract: A fuel cell diffusion layer providing a preferential path by which liquid reactants or byproducts may be supplied to or removed from a direct oxidation fuel cell is described. The modified diffusion layer will be typically on the cathode side of the fuel cell and its use is to eliminate or minimize flooding of the cathode diffusion layer area, which is a performance limiting condition in direct methanol fuel cells. In accordance with one embodiment of the invention, the diffusion layer includes a substrate that is coated with a microporous layer. A pattern may be embossed into the diffusion layer, to create preferential flow paths by which water will travel and thereby be removed from the cathode catalyst area. This avoids cathode flooding and avoids build up of potentially destructive pressure by possible cathodic water accumulation.
    Type: Grant
    Filed: April 13, 2005
    Date of Patent: February 20, 2007
    Assignee: MTI MicroFuel Cells Inc.
    Inventors: Gerhard Beckmann, Xiaoming Ren, Paul F. Mutolo, Frank W. Kovacs, Shimshon Gottesfeld
  • Patent number: 6890680
    Abstract: A fuel cell diffusion layer providing a preferential path by which liquid reactants or byproducts may be supplied to or removed from a direct oxidation fuel cell is described. The modified diffusion layer will be typically on the cathode side of the fuel cell and its use is to eliminate or minimize flooding of the cathode diffusion layer area, which is a performance limiting condition in direct methanol fuel cells. In accordance with one embodiment of the invention, the diffusion layer includes a substrate that is coated with a microporous layer. A pattern may be embossed into the diffusion layer, to create preferential flow paths by which water will travel and thereby be removed from the cathode catalyst area. This avoids cathode flooding and avoids build up of potentially destructive pressure by possible cathodic water accumulation.
    Type: Grant
    Filed: February 19, 2002
    Date of Patent: May 10, 2005
    Assignee: MTI MicroFuel Cells Inc.
    Inventors: Gerhard Beckmann, Xiaoming Ren, Paul F. Mutolo, Frank W. Kovacs, Shimshon Gottesfeld
  • Publication number: 20040265657
    Abstract: An adjustable fuel delivery regulation assembly is provided which can be disposed within a direct oxidation fuel cell system, or the fuel reservoir or fuel tank that supplies such a system. One embodiment of the fuel delivery regulation assembly is a shutter assembly, which includes two correspondingly perforated components. The two components can be positioned relative to one another such that the apertures in each component are aligned in certain ways. In an open position, the apertures are substantially fully aligned to permit full fuel flow. In a closed position, the apertures are offset such that there is no opening; thereby fuel flow is restricted. Intermediate positions allow adjustments in the amount of fuel flow proportional to the size of the openings. In accordance with another embodiment of the invention, a set of rotatably mounted slotted rods is inserted into a housing through which fuel can flow through openings in the housing.
    Type: Application
    Filed: June 27, 2003
    Publication date: December 30, 2004
    Inventors: Gerhard Beckmann, Robert S. Hirsch, Paul F. Mutolo, J. Perry Scartozzi, Robert K. Sievers
  • Publication number: 20040209133
    Abstract: An adjustable fuel delivery regulation assembly is provided which can be disposed within a direct oxidation fuel cell system, or the fuel reservoir or fuel tank that supplies such a system. One embodiment of the fuel delivery regulation assembly is a shutter assembly, which includes two correspondingly perforated components. The two components can be positioned relative to one another such that the apertures in each component are aligned in certain ways. In an open position, the apertures are substantially fully aligned to permit full fuel flow. In a closed position, the apertures are offset such that there is no opening; thereby fuel flow is restricted. Intermediate positions allow adjustments in the amount of fuel flow proportional to the size of the openings. In accordance with another embodiment of the invention, a set of rotatably mounted slotted rods is inserted into a housing through which fuel can flow through openings in the housing.
    Type: Application
    Filed: April 15, 2003
    Publication date: October 21, 2004
    Inventors: Robert S. Hirsch, Paul F. Mutolo, Juan J. Becerra, Robert K. Sievers, J. Perry Scartozzi, William P. Acker
  • Publication number: 20030170508
    Abstract: Apparatus and methods for the generation of water in a direct oxidation fuel cell. Water, in addition to carbon dioxide and heat, is produced when carbonaceous fuel or fuel solution is oxidized in the presence of air and a suitable catalyst. This oxidation reaction is performed on a surface that allows for the introduction of oxygen in the presence of a catalyst. Water produced can then be directly added to the fuel solution thereby diluting the fuel solution to a desired concentration, or may be separately and then later added to fuel solution for the normal fuel cell operations depending on the permeability of the membrane to water.
    Type: Application
    Filed: March 6, 2002
    Publication date: September 11, 2003
    Inventors: Gerhard Beckmann, Paul F. Mutolo, William W. Dailey
  • Publication number: 20030157396
    Abstract: A fuel cell diffusion layer providing a preferential path by which liquid reactants or byproducts may be supplied to or removed from a direct oxidation fuel cell is described. The modified diffusion layer will be typically on the cathode side of the fuel cell and its use is to eliminate or minimize flooding of the cathode diffusion layer area, which is a performance limiting condition in direct methanol fuel cells. In accordance with one embodiment of the invention, the diffusion layer includes a substrate that is coated with a microporous layer. A pattern may be embossed into the diffusion layer, to create preferential flow paths by which water will travel and thereby be removed from the cathode catalyst area. This avoids cathode flooding and avoids build up of potentially destructive pressure by possible cathodic water accumulation.
    Type: Application
    Filed: February 19, 2002
    Publication date: August 21, 2003
    Inventors: Gerhard Beckmann, Xiaoming Ren, Paul F. Mutolo, Frank W. Kovacs, Shimshon Gottesfeld