Patents by Inventor Paul F. Rodney

Paul F. Rodney has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20040124837
    Abstract: A method for manufacturing NMR measurement-while-drilling tool having the mechanical strength and measurement sensitivity to perform NMR measurements of an earth formation while drilling a borehole, and a method and apparatus for monitoring the motion of the measuring tool in order to take this motion into account when processing NMR signals from the borehole. The tool has a permanent magnet with a magnetic field direction substantially perpendicular to the axis of the borehole, a steel collar of a non-magnetic material surrounding the magnet, antenna positioned outside the collar, and a soft magnetic material positioned in a predetermined relationship with the collar and the magnet that helps to shape the magnetic field of the tool. Due to the non-magnetic collar, the tool can withstand the extreme conditions in the borehole environment while the borehole is being drilled.
    Type: Application
    Filed: June 24, 2003
    Publication date: July 1, 2004
    Applicant: NUMAR
    Inventors: Manfred G. Prammer, James H. Dudley, Peter Masak, George D. Goodman, Marian Morys, Dale A. Jones, Roger P. Bartel, Chen-Kang David Chen, Michael L. Larronde, Paul F. Rodney, John E. Smaardyk
  • Patent number: 6750783
    Abstract: A downhole electromagnetic telemetry system with an increased data rate is provided. In one embodiment, a PSK data transmission system is used to transmit data in a downhole electromagnetic telemetry system for Measure While Drilling (MWD) applications. MWD applications suffer from data rates that are not well suited for the ever-increasing amount of data that needs to be transmitted. One method of increasing the data rate includes increasing the cater frequency, but this can cause undesirable signal attenuation and distortion. Conversely, decreasing the carrier frequency provides the reward of a stronger signal at the risk of aliasing, especially with wide bandwidth signals. A derivation predicts that the frequency may actually be decreased while increasing the number of phase states to achieve a higher data rate, without affecting the bandwidth. The described system and method may advantageously provide a robust, low-power electromagnetic telemetry system with an increased data rate.
    Type: Grant
    Filed: July 5, 2002
    Date of Patent: June 15, 2004
    Assignee: Halliburton Energy Services, Inc.
    Inventor: Paul F. Rodney
  • Publication number: 20040069514
    Abstract: An electromagnetic borehole telemetry system providing improved signal to noise ratio. Adaptive filters use noise channels as references to remove noise from the signal channel. Directional detectors provide a signal channel with reduced noise content and improved noise channels with reduced signal content. Directional detectors may be magnetometers aligned with the magnetic field, or antennas aligned with the electric field, of signal or noise sources. Alignment may be performed by beam steering of the outputs of a three-channel detector, which may detect both signal and noise.
    Type: Application
    Filed: September 29, 2003
    Publication date: April 15, 2004
    Inventors: Paul F. Rodney, Harrison C. Smith, Wallace R. Gardner
  • Publication number: 20040045705
    Abstract: A portion of at least one fiber is moved from a wellbore into a formation such that the portion is placed to conduct a signal responsive to at least one parameter in the formation. One particular implementation uses fiber optic cable with a process selected from the group consisting of a fracturing process, an acidizing process, and a conformance process.
    Type: Application
    Filed: September 9, 2002
    Publication date: March 11, 2004
    Inventors: Wallace R. Gardner, Paul F. Rodney, Neal G. Skinner, Vimal V. Shah
  • Publication number: 20040047534
    Abstract: A portion of at least one fiber is moved into an exterior annulus of a well between a tubular structure in the well and the wall of the borehole of the well such that the portion is placed to conduct a signal responsive to at least one parameter in the exterior annulus. One particular implementation uses fiber optic cable with a cementing process whereby flowing cementing fluid pulls the portion of the cable into the exterior annulus.
    Type: Application
    Filed: September 9, 2002
    Publication date: March 11, 2004
    Inventors: Vimal V. Shah, Wallace R. Gardner, Paul F. Rodney, Neal G. Skinner
  • Publication number: 20040004553
    Abstract: A downhole electromagnetic telemetry system with an increased data rate is disclosed. In one embodiment, a PSK data transmission system is used to transmit data in a downhole electromagnetic telemetry system for Measure While Drilling (MWD) applications. MWD applications suffer from data rates that are not well suited for the ever-increasing amount of data that needs to be transmitted. One method of increasing the data rate includes increasing the carrier frequency, but this can cause undesirable signal attenuation and distortion. Conversely, decreasing the carrier frequency provides the reward of a stronger signal at the risk of aliasing, especially with wide bandwidth signals. A derivation is disclosed predicting that the frequency may actually be decreased while increasing the number of phase states to achieve a higher data rate, without affecting the bandwidth. The system and method disclosed may advantageously provide a robust, low-power electromagnetic telemetry system with an increased data rate.
    Type: Application
    Filed: July 5, 2002
    Publication date: January 8, 2004
    Applicant: Halliburton Energy Services, Inc.
    Inventor: Paul F. Rodney
  • Publication number: 20040003658
    Abstract: An apparatus and system are disclosed for in situ measurement of downhole fluid flow using Doppler techniques. First, a baseline speed of sound is established as close to the desired measurement point as possible. This speed of sound measurement is then used in Doppler calculations for determining flow velocities based from induced Doppler shift resulting from fluid flow. A heterodyne receiver arrangement is preferably used for processing so that the flow direction can be determined and the detection sensitivity for low flow velocities can be enhanced. From in situ measurements, well kicks may be spotted and dealt with in real-time. In addition, current theoretical models of Theological properties may be verified and expounded upon using in situ downhole measurement techniques. Furthermore, the velocity measurements described herein can be used to recognize downhole lost circulation and/or gas/water/oil influxes as early as possible, even when the mud recirculation pumps are turned off.
    Type: Application
    Filed: May 14, 2003
    Publication date: January 8, 2004
    Applicant: Halliburton Energy Services, Inc.
    Inventors: Wei Han, Jean M. Beique, James R. Birchak, Alan T. Hemphill, Tim Wiemers, Paul F. Rodney
  • Patent number: 6657597
    Abstract: An electromagnetic borehole telemetry system providing improved signal to noise ratio. Adaptive filters use noise channels as references to remove noise from the signal channel. Directional detectors provide a signal channel with reduced noise content and improved noise channels with reduced signal content. Directional detectors may be magnetometers aligned with the magnetic field, or antennas aligned with the electric field, of signal or noise sources. Alignment may be performed by beam steering of the outputs of a three-channel detector, which may detect both signal and noise.
    Type: Grant
    Filed: August 6, 2001
    Date of Patent: December 2, 2003
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Paul F. Rodney, Harrison C. Smith, Wallace R. Gardner
  • Patent number: 6619394
    Abstract: A process and apparatus for treating a wellbore, comprising subjecting a substantially same portion of the wellbore to vibratory waves produced by a plurality of vibratory wave generators. The vibratory waves may have about the same frequency or a plurality of frequencies, and the frequencies may partially overlap, not overlap, or be modulated across a range. Additionally, the frequencies may be modulated in an oval, hoop, and flexural modes. The vibratory waves may be produced by firing the vibratory wave generators simultaneously or in sequence. Combinations of a vibrating pipe, piston pulser, or valve may be used as vibratory wave generators. In a preferred embodiment, the thickness and change of thickness of a mudcake on the interior surface of a wellbore are measured to evaluate the effectiveness of the wellbore treatment.
    Type: Grant
    Filed: December 7, 2000
    Date of Patent: September 16, 2003
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Mohamed Y. Soliman, Ali I. Mese, Clark E. Robison, James R. Birchak, Paul F. Rodney, Wei Han, Vimal V. Shah, Eugene J. Linyaev, Mark A. Proett
  • Publication number: 20030151977
    Abstract: The present disclosure provides several methods for selecting and transmitting information from downhole using more than one channel of communication wherein data streams transmitted up each communications channel are each independently interpretable without reference to data provided up the other of the communications channels. Preferred embodiments incorporate the use of a combination of at least two of mud-based telemetry, tubular-based telemetry, and electromagnetic telemetry to achieve improved results and take advantage of opportunities presented by the differences between the different channels of communication.
    Type: Application
    Filed: February 13, 2002
    Publication date: August 14, 2003
    Inventors: Vimal V. Shah, Wallace R. Gardner, Paul F. Rodney, James H. Dudley, M. Douglas McGregor
  • Patent number: 6583621
    Abstract: A method for manufacturing NMR measurement-while-drilling tool having the mechanical strength and measurement sensitivity to perform NMR measurements of an earth formation while drilling a borehole, and a method and apparatus for monitoring the motion of the measuring tool in order to take this motion into account when processing NMR signals from the borehole. The tool has a permanent magnet with a magnetic field direction substantially perpendicular to the axis of the borehole, a steel collar of a non-magnetic material surrounding the magnet, antenna positioned outside the collar, and a soft magnetic material positioned in a predetermined relationship with the collar and the magnet that helps to shape the magnetic field of the tool. Due to the non-magnetic collar, the tool can withstand the extreme conditions in the borehole environment while the borehole is being drilled.
    Type: Grant
    Filed: March 27, 2002
    Date of Patent: June 24, 2003
    Assignee: Numar Corporation
    Inventors: Manfred G. Prammer, James H. Dudley, Peter Masak, George D. Goodman, Marian Morys, Dale A. Jones, Roger P. Bartel, Chen-Kang David Chen, Michael L. Larronde, Paul F. Rodney, John E. Smaardyk
  • Publication number: 20030025639
    Abstract: An electromagnetic borehole telemetry system providing improved signal to noise ratio. Adaptive filters use noise channels as references to remove noise from the signal channel. Directional detectors provide a signal channel with reduced noise content and improved noise channels with reduced signal content. Directional detectors may be magnetometers aligned with the magnetic field, or antennas aligned with the electric field, of signal or noise sources. Alignment may be performed by beam steering of the outputs of a three-channel detector, which may detect both signal and noise.
    Type: Application
    Filed: August 6, 2001
    Publication date: February 6, 2003
    Inventors: Paul F. Rodney, Harrison C. Smith, Wallace R. Gardner
  • Publication number: 20020163335
    Abstract: A method for manufacturing NMR measurement-while-drilling tool having the mechanical strength and measurement sensitivity to perform NMR measurements of an earth formation while drilling a borehole, and a method and apparatus for monitoring the motion of the measuring tool in order to take this motion into account when processing NMR signals from the borehole. The tool has a permanent magnet with a magnetic field direction substantially perpendicular to the axis of the borehole, a steel collar of a non-magnetic material surrounding the magnet, antenna positioned outside the collar, and a soft magnetic material positioned in a predetermined relationship with the collar and the magnet that helps to shape the magnetic field of the tool. Due to the non-magnetic collar, the tool can withstand the extreme conditions in the borehole environment while the borehole is being drilled.
    Type: Application
    Filed: March 27, 2002
    Publication date: November 7, 2002
    Applicant: Numar Corporation
    Inventors: Manfred G. Prammer, James H. Dudley, Peter Masak, George D. Goodman, Marian Morys, Dale A. Jones, Roger P. Bartel, Chen-Kang David Chen, Michael L. Larronde, Paul F. Rodney, John E. Smaardyk
  • Publication number: 20020070017
    Abstract: The present invention discloses a process and apparatus for treating a wellbore, comprising subjecting a substantially same portion of the wellbore to vibratory waves produced by a plurality of vibratory wave generators. The vibratory waves may have about the same frequency or a plurality of frequencies, and the frequencies may partially overlap, not overlap, or be modulated across a range. Additionally, the frequencies may be modulated in an oval, hoop, and flexural modes. The vibratory waves may be produced by firing the vibratory wave generators simultaneously or in sequence. Preferably, the vibratory waves are acoustically streamed in a viscous boundary layer near obstacles, outside a viscous boundary layer near obstacles, or in a free non-uniform sound field. In a preferred embodiment, a vibrating pipe and a piston pulser are used as vibratory wave generators. In another preferred embodiment, a vibrating pipe, piston pulser, and a valve are used as vibratory wave generators.
    Type: Application
    Filed: December 7, 2000
    Publication date: June 13, 2002
    Inventors: Mohamed Y. Soliman, Ali I. Mese, Clark E. Robison, James R. Birchak, Paul F. Rodney, Wei Han, Vimal V. Shah, Eugene J. Linyaev, Mark A. Proett
  • Patent number: 6397950
    Abstract: An apparatus and method for removing a frangible rupture disc or other frangible device from a wellbore casing. The casing has a special casing section defining a plurality of holes therethrough. Rupturable glass ceramic discs or inserts are disposed in the holes and retained therein. The glass ceramic discs or inserts are adapted to withstand fluid differential pressure normally present in the wellbore but are rupturable in response to impingement by a pressure wave thereon. The pressure wave is provided by a pressure wave generating device positionable in the casing string adjacent to the holes in the special casing section. The pressure generative device may generate a pressure pulse or an acoustical wave. Methods of perforating a well casing using a pressure pulse or an acoustical wave are also disclosed.
    Type: Grant
    Filed: July 31, 2000
    Date of Patent: June 4, 2002
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Steven G. Streich, James C. Tucker, James R. Birchak, Paul F. Rodney, Neal G. Skinner
  • Patent number: 6362619
    Abstract: An NMR measurement-while-drilling tool having the mechanical strength and measurement sensitivity to perform NMR measurements of an earth formation while drilling a borehole, and a method and apparatus for monitoring the motion of the measuring tool in order to take this motion into account when processing NMR signals from the borehole. The tool has a permanent magnet with a magnetic field direction substantially perpendicular to the axis of the borehole, a steel collar of a non-magnetic material surrounding the magnet, antenna positioned outside the collar, and a soft magnetic material positioned in a predetermined relationship with the collar and the magnet that helps to shape the magnetic field of the tool. Due to the non-magnetic collar, the tool can withstand the extreme conditions in the borehole environment while the borehole is being drilled.
    Type: Grant
    Filed: July 31, 2001
    Date of Patent: March 26, 2002
    Assignee: Numar Corporation
    Inventors: Manfred G. Prammer, James H. Dudley, Peter Masak, George D. Goodman, Marian Morys, Dale A. Jones, Roger P. Bartel, Chen-Kang David Chen, Michael L. Larronde, Paul F. Rodney, John E. Smaardyk
  • Publication number: 20010045829
    Abstract: An NMR measurement-while-drilling tool having the mechanical strength and measurement sensitivity to perform NMR measurements of an earth formation while drilling a borehole, and a method and apparatus for monitoring the motion of the measuring tool in order to take this motion into account when processing NMR signals from the borehole. The tool has a permanent magnet with a magnetic field direction substantially perpendicular to the axis of the borehole, a steel collar of a non-magnetic material surrounding the magnet, antenna positioned outside the collar, and a soft magnetic material positioned in a predetermined relationship with the collar and the magnet that helps to shape the magnetic field of the tool. Due to the non-magnetic collar, the tool can withstand the extreme conditions in the borehole environment while the borehole is being drilled.
    Type: Application
    Filed: July 31, 2001
    Publication date: November 29, 2001
    Inventors: Manfred G. Prammer, James H. Dudley, Peter Masak, George D. Goodman, Marian Morys, Dale A. Jones, Roger P. Bartel, Chen-Kang David Chen, Michael L. Larronde, Paul F. Rodney, John E. Smaardyk
  • Patent number: 6268726
    Abstract: An NMR measurement-while-drilling tool having the mechanical strength and measurement sensitivity to perform NMR measurements of an earth formation while drilling a borehole, and a method and apparatus for monitoring the motion of the measuring tool in order to take this motion into account when processing NMR signals from the borehole. The tool has a permanent magnet with a magnetic field direction substantially perpendicular to the axis of the borehole, a steel collar of a non-magnetic material surrounding the magnet, antenna positioned outside the collar, and a soft magnetic material positioned in a predetermined relationship with the collar and the magnet that helps to shape the magnetic field of the tool. Due to the non-magnetic collar, the tool can withstand the extreme conditions in the borehole environment while the borehole is being drilled.
    Type: Grant
    Filed: January 15, 1999
    Date of Patent: July 31, 2001
    Assignee: Numar Corporation
    Inventors: Manfred G. Prammer, James H. Dudley, Peter Masak, George D. Goodman, Marian Morys, Dale A. Jones, Roger P. Bartel, Chen-Kang David Chen, Michael L. Larronde, Paul F. Rodney, John E. Smaardyk
  • Patent number: 6196335
    Abstract: A downhole tool for use at or near the bit measures the vibrations at or near the bit. The tool uses statistical techniques to choose strong events. The tool sends data regarding the strong events to the surface via telemetry.
    Type: Grant
    Filed: April 12, 1999
    Date of Patent: March 6, 2001
    Assignee: Dresser Industries, Inc.
    Inventor: Paul F. Rodney
  • Patent number: 6151554
    Abstract: A power spectrum density processor is located near the drill bit while drilling. The power spectral density processor computes the power spectral density of the vibrations generated by the drill bit while drilling. The power spectral density information is telemetered to the surface where it is used to enhance drill bit seismic techniques.
    Type: Grant
    Filed: April 12, 1999
    Date of Patent: November 21, 2000
    Assignee: Dresser Industries, Inc.
    Inventor: Paul F. Rodney