Patents by Inventor Paul Flint

Paul Flint has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11761856
    Abstract: A method comprising: inspecting an engine during a first period of time to identify damage, the engine being associated with an aircraft; receiving three-dimensional data of one or more components of the engine, the three-dimensional data being generated during the first period of time; determining, during the first period of time, whether the identified damage exceeds a threshold; providing instructions to release the aircraft for operation in a second period of time, subsequent to the first period of time, if the identified damage does not exceed the threshold; and inspecting the received three-dimensional data during the second period of time to measure damage.
    Type: Grant
    Filed: November 17, 2020
    Date of Patent: September 19, 2023
    Assignee: ROLLS-ROYCE plc
    Inventors: Paul A Flint, Adriano Pulisciano, Bilal M Nasser
  • Patent number: 11579046
    Abstract: A computer-implemented method comprising: receiving data comprising two-dimensional data and three-dimensional data of a component of an engine; identifying a feature of the component using the two-dimensional data; determining coordinates of the feature in the two-dimensional data; determining coordinates of the feature in the three-dimensional data using: the determined coordinates of the feature in the two-dimensional data; and a pre-determined transformation between coordinates in two-dimensional data and coordinates in three-dimensional data; and measuring a parameter of the feature of the component using the determined coordinates of the feature in the three-dimensional data.
    Type: Grant
    Filed: November 17, 2020
    Date of Patent: February 14, 2023
    Assignee: ROLLS-ROYCE plc
    Inventors: Adriano Pulisciano, Bilal M Nasser, Paul A Flint
  • Publication number: 20210172837
    Abstract: A computer-implemented method comprising: receiving data comprising two-dimensional data and three-dimensional data of a component of an engine; identifying a feature of the component using the two-dimensional data; determining coordinates of the feature in the two-dimensional data; determining coordinates of the feature in the three-dimensional data using: the determined coordinates of the feature in the two-dimensional data; and a pre-determined transformation between coordinates in two-dimensional data and coordinates in three-dimensional data; and measuring a parameter of the feature of the component using the determined coordinates of the feature in the three-dimensional data.
    Type: Application
    Filed: November 17, 2020
    Publication date: June 10, 2021
    Applicant: ROLLS-ROYCE plc
    Inventors: Adriano PULISCIANO, Bilal M. NASSER, Paul A. FLINT
  • Publication number: 20210172836
    Abstract: A method comprising: inspecting an engine during a first period of time to identify damage, the engine being associated with an aircraft; receiving three-dimensional data of one or more components of the engine, the three-dimensional data being generated during the first period of time; determining, during the first period of time, whether the identified damage exceeds a threshold; providing instructions to release the aircraft for operation in a second period of time, subsequent to the first period of time, if the identified damage does not exceed the threshold; and inspecting the received three-dimensional data during the second period of time to measure damage.
    Type: Application
    Filed: November 17, 2020
    Publication date: June 10, 2021
    Applicant: ROLLS-ROYCE plc
    Inventors: Paul A. FLINT, Adriano PULISCIANO, Bilal M. NASSER
  • Patent number: 10058390
    Abstract: Featured are systems, devices and apparatuses for use in minimally invasive surgical, diagnostic or therapeutic methods and/or techniques, in particular methods and/or techniques for a mammalian throat. In particular embodiments, a dexterity apparatus including one or more dexterity devices is featured, where each of the dexterity devices comprises surgical tools and each is configured and arranged with end-tip dexterity for enhanced manipulation. A portion of the dexterity devices is snake like, which is re-configurable (i.e., can be bent) so as to in effect maneuver the surgical tool and put the tool in a desired position with respect to the surgical site. Another portion of the dexterity device includes the surgical tool thereby providing the capability of performing surgical actions such as sewing, gripping, soft tissue manipulation, cutting and suction of saliva, blood and other materials from the surgical site.
    Type: Grant
    Filed: January 14, 2013
    Date of Patent: August 28, 2018
    Assignee: The Johns Hopkins University
    Inventors: Nabil Simaan, Russell H. Taylor, Paul Flint, Gregory Chirikjian, David Stein
  • Patent number: 9089354
    Abstract: Featured are systems, devices and apparatuses for use in minimally invasive surgical, diagnostic or therapeutic methods and/or techniques, in particular methods and/or techniques for a mammalian throat. In particular embodiments, a dexterity apparatus including one or more dexterity devices is featured, where each of the dexterity devices comprises surgical tools and each is configured and arranged with end-tip dexterity for enhanced manipulation. A portion of the dexterity devices is snake like, which is re-configurable (i.e., can be bent) so as to in effect maneuver the surgical tool and put the tool in a desired position with respect to the surgical site. Another portion of the dexterity device includes the surgical tool thereby providing the capability of performing surgical actions such as sewing, gripping, soft tissue manipulation, cutting and suction of saliva, blood and other materials from the surgical site.
    Type: Grant
    Filed: January 14, 2013
    Date of Patent: July 28, 2015
    Assignee: The Johns Hopkins University
    Inventors: Nabil Simaan, Russell H. Taylor, Paul Flint, Gregory Chirikjian, David Stein
  • Patent number: 8594924
    Abstract: An asset operational health monitoring system, in which a plurality of sensors are arranged to determine values of asset operation parameters pertaining to an instance of asset operation. One or more processing unit receives data corresponding to said asset operation values and determine a plurality of asset locations at a corresponding plurality of points in time. The one or more processing unit is arranged to receive data indicative of the location of a region of adverse environmental conditions which may impact on the operation of the asset and to compare the determined locations of the asset with the location of said region so as to determine whether one or more of said asset locations fall within said region. An indicator of operational risk associated with the presence of said asset in said region is output which can drive asset operation or maintenance decision making. The system may be used for ash cloud impact monitoring for aircraft, a fleet of aircraft or aircraft engines.
    Type: Grant
    Filed: July 12, 2012
    Date of Patent: November 26, 2013
    Assignee: Rolls-Royce, PLC
    Inventors: Stephen P. King, Adrian Bird, Paul A. Flint, Daniel K. Goodall
  • Publication number: 20130054056
    Abstract: An asset operational health monitoring system, in which a plurality of sensors are arranged to determine values of asset operation parameters pertaining to an instance of asset operation. One or more processing unit receives data corresponding to said asset operation values and determine a plurality of asset locations at a corresponding plurality of points in time. The one or more processing unit is arranged to receive data indicative of the location of a region of adverse environmental conditions which may impact on the operation of the asset and to compare the determined locations of the asset with the location of said region so as to determine whether one or more of said asset locations fall within said region. An indicator of operational risk associated with the presence of said asset in said region is output which can drive asset operation or maintenance decision making. The system may be used for ash cloud impact monitoring for aircraft, a fleet of aircraft or aircraft engines.
    Type: Application
    Filed: July 12, 2012
    Publication date: February 28, 2013
    Applicant: ROLLS-ROYCE PLC
    Inventors: Stephen P. KING, Adrian BIRD, Paul A. FLINT, Daniel K. GOODALL
  • Patent number: 8365633
    Abstract: Featured are systems, devices and apparatuses for use in minimally invasive surgical, diagnostic or therapeutic methods and/or techniques, in particular methods and/or techniques for a mammalian throat. In particular embodiments, a dexterity apparatus including one or more dexterity devices is featured, where each of the dexterity devices comprises surgical tools and each is configured and arranged with end-tip dexterity for enhanced manipulation. A portion of the dexterity devices is snake like, which is re-configurable (i.e., can be bent) so as to in effect maneuver the surgical tool and put the tool in a desired position with respect to the surgical site. Another portion of the dexterity device includes the surgical tool thereby providing the capability of performing surgical actions such as sewing, gripping, soft tissue manipulation, cutting and suction of saliva, blood and other materials from the surgical site.
    Type: Grant
    Filed: May 21, 2004
    Date of Patent: February 5, 2013
    Assignee: The Johns Hopkins University
    Inventors: Nabil Simaan, Russell H. Taylor, Paul Flint, Gregory Chirikjian, David Stein
  • Patent number: 7822576
    Abstract: A method of monitoring the health of a gas turbine engine 10 comprising a fuel system 30 having a fuel metering valve 36 and a fuel pump 40 for supplying fuel to a combustor apparatus 15. The method comprising the steps of: monitoring the fuel metering valve percentage open, detecting and sending a warning message when the fuel metering valve percentage open is at 97% or greater and within a predetermined time from when the first percentage open is at 97% or greater, replacing the fuel pump 40. In this way scheduling of servicing and replacement of the fuel pump may be made without disruption to the aircraft operator particularly where the operator has a fleet of aircraft.
    Type: Grant
    Filed: December 5, 2006
    Date of Patent: October 26, 2010
    Assignee: Rolls-Royce plc
    Inventors: Paul A Flint, Sylvain Brillat
  • Patent number: 7409855
    Abstract: The present invention is a method of monitoring the health of a fuel system 30 of a gas turbine engine 10. The fuel system 30 comprising a fuel-metering valve 36, a hydraulic control valve servo pressure line 40 and a control pressure line 39. The fuel-metering valve comprises a hydraulic control valve solenoid 36 for metering the flow of fuel and a fuel filter 38 and, in use, a current is applied to the solenoid 38 to control the required fuel demand to fuel nozzles 25. The method comprises the steps of; measuring either the percentage difference between fuel metering valve demand and actual positions or the percentage difference in pressure between the servo pressure line 40 and the control pressure line 39, comparing the differential to a predetermined level, when that predetermined level is reached a warning is given. Thereby the engine may be scheduled for service before unsatisfactory performance of the fuel system is experienced.
    Type: Grant
    Filed: November 24, 2006
    Date of Patent: August 12, 2008
    Assignee: Rolls-Royce plc
    Inventor: Paul A. Flint
  • Publication number: 20070261384
    Abstract: A method of monitoring the health of a gas turbine engine 10 comprising a fuel system 30 having a fuel metering valve 36 and a fuel pump 40 for supplying fuel to combustor apparatus 15. The method comprising the steps of; monitoring the fuel metering valve percentage open, detecting and sending a warning message when the fuel metering valve percentage open is at 97% or greater and within a predetermined time from when the first percentage open is at 97% or greater, replacing the fuel pump 40. In this way scheduling of servicing and replacement of the fuel pump may be made without disruption to the aircraft operator particularly where the operator has a fleet of aircraft.
    Type: Application
    Filed: December 5, 2006
    Publication date: November 15, 2007
    Inventors: Paul Flint, Sylvain Brillat
  • Publication number: 20070144246
    Abstract: The present invention is a method of monitoring the health of a fuel system 30 of a gas turbine engine 10. The fuel system 30 comprising a fuel-metering valve 36, a hydraulic control valve servo pressure line 40 and a control pressure line 39. The fuel-metering valve comprises a hydraulic control valve solenoid 36 for metering the flow of fuel and a fuel filter 38 and, in use, a current is applied to the solenoid 38 to control the required fuel demand to fuel nozzles 25. The method comprises the steps of; measuring either the percentage difference between fuel metering valve demand and actual positions or the percentage difference in pressure between the servo pressure line 40 and the control pressure line 39, comparing the differential to a predetermined level, when that predetermined level is reached a warning is given. Thereby the engine may be scheduled for service before unsatisfactory performance of the fuel system is experienced.
    Type: Application
    Filed: November 24, 2006
    Publication date: June 28, 2007
    Applicant: ROLLS-ROYCE PLC
    Inventor: Paul A. Flint
  • Publication number: 20050059960
    Abstract: Featured are systems, devices and apparatuses for use in minimally invasive surgical, diagnostic or therapeutic methods and/or techniques, in particular methods and/or techniques for a mammalian throat. In particular embodiments, a dexterity apparatus including one or more dexterity devices is featured, where each of the dexterity devices comprises surgical tools and each is configured and arranged with end-tip dexterity for enhanced manipulation. A portion of the dexterity devices is snake like, which is re-configurable (i.e., can be bent) so as to in effect maneuver the surgical tool and put the tool in a desired position with respect to the surgical site. Another portion of the dexterity device includes the surgical tool thereby providing the capability of performing surgical actions such as sewing, gripping, soft tissue manipulation, cutting and suction of saliva, blood and other materials from the surgical site.
    Type: Application
    Filed: May 21, 2004
    Publication date: March 17, 2005
    Applicant: Johns Hopkins University
    Inventors: Nabil Simaan, Russell Taylor, Paul Flint, Gregory Chirikjian, David Stein
  • Patent number: 5861060
    Abstract: A grounded insulated electrostatic supply tank comprised of a conductive tank that has several liners to fully insulate a waterborn fluid in the tank from ground. The interior of the tank and a sealed lid are coated with an insulating liner. An intermediate lining is placed in the tank and third interior insulating inner liner is inserted in the tank and has a lip that wraps around the upper rim of the tank and is sealed between the lid and the tank. Electrostatic spray equipment is connected to the tank by a coaxial hose having an inner non-conductive hose and preferably, an outer hose that is conductive. Inner non-conductive hose extends through the lid into an insulating teflon pick-up tube that extends to near the bottom of the tank. Depleted waterborn fluid in the tank is grounded after use by a manual probe or by a piston operated automatic grounding system.
    Type: Grant
    Filed: January 11, 1996
    Date of Patent: January 19, 1999
    Assignee: Binks Sames Corporation
    Inventors: James R. Maugans, Kevin J. Knight, Paul Flint