Patents by Inventor Paul Gueye

Paul Gueye has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9351691
    Abstract: An apparatus and method for in vivo and ex vivo control, detection and measurement of radiation in therapy, diagnostcs, and related applications accomplished through scintillating fiber detection. One example includes scintillating fibers placed along a delivery guide such as a catheter for measuring applied radiation levels during radiotherapy treatments, sensing locations of a radiation source, or providing feedback of sensed radiation. Another option is to place the fibers into a positioning device such as a balloon, or otherwise in the field of the radiation delivery. The scintillating fibers provide light output levels correlating to the levels of radiation striking the fibers and comparative measurement between fibers can be used for more extensive dose mapping. Adjustments to a radiation treatment may be made as needed based on actual and measured applied dosages as determined by the fiber detectors. Characteristics of a radiation source may also be measured using scintillating materials.
    Type: Grant
    Filed: April 14, 2015
    Date of Patent: May 31, 2016
    Assignee: Hampton University
    Inventors: Cynthia E. Keppel, Paul Gueye, Christopher Sinesi
  • Publication number: 20150216491
    Abstract: An apparatus and method for in vivo and ex vivo control, detection and measurement of radiation in therapy, diagnostcs, and related applications accomplished through scintillating fiber detection. One example includes scintillating fibers placed along a delivery guide such as a catheter for measuring applied radiation levels during radiotherapy treatments, sensing locations of a radiation source, or providing feedback of sensed radiation. Another option is to place the fibers into a positioning device such as a balloon, or otherwise in the field of the radiation delivery. The scintillating fibers provide light output levels correlating to the levels of radiation striking the fibers and comparative measurement between fibers can be used for more extensive dose mapping. Adjustments to a radiation treatment may be made as needed based on actual and measured applied dosages as determined by the fiber detectors. Characteristics of a radiation source may also be measured using scintillating materials.
    Type: Application
    Filed: April 14, 2015
    Publication date: August 6, 2015
    Applicant: HAMPTON UNIVERSITY
    Inventors: Cynthia E. KEPPEL, Paul Gueye, Christopher Sinesi
  • Patent number: 9028390
    Abstract: An apparatus and method for in vivo and ex vivo control, detection and measurement of radiation in therapy, diagnostics, and related applications accomplished through scintillating fiber detection. One example includes scintillating fibers placed along a delivery guide such as a catheter for measuring applied radiation levels during radiotherapy treatments, sensing locations of a radiation source, or providing feedback of sensed radiation. Another option is to place the fibers into a positioning device such as a balloon, or otherwise in the field of the radiation delivery. The scintillating fibers provide light output levels correlating to the levels of radiation striking the fibers and comparative measurement between fibers can be used for more extensive dose mapping. Adjustments to a radiation treatment may be made as needed based on actual and measured applied dosages as determined by the fiber detectors. Characteristics of a radiation source may also be measured using scintillating materials.
    Type: Grant
    Filed: July 18, 2013
    Date of Patent: May 12, 2015
    Assignee: Hampton University
    Inventors: Cynthia E. Keppel, Paul Gueye, Christopher Sinesi
  • Publication number: 20140018675
    Abstract: An apparatus and method for in vivo and ex vivo control, detection and measurement of radiation in therapy, diagnostcs, and related applications accomplished through scintillating fiber detection. One example includes scintillating fibers placed along a delivery guide such as a catheter for measuring applied radiation levels during radiotherapy treatments, sensing locations of a radiation source, or providing feedback of sensed radiation. Another option is to place the fibers into a positioning device such as a balloon, or otherwise in the field of the radiation delivery. The scintillating fibers provide light output levels correlating to the levels of radiation striking the fibers and comparative measurement between fibers can be used for more extensive dose mapping. Adjustments to a radiation treatment may be made as needed based on actual and measured applied dosages as determined by the fiber detectors. Characteristics of a radiation source may also be measured using scintillating materials.
    Type: Application
    Filed: July 18, 2013
    Publication date: January 16, 2014
    Applicant: Hampton University
    Inventors: Cynthia E. KEPPEL, Paul Gueye, Christopher Sinesi
  • Patent number: 8568285
    Abstract: An apparatus and method for in vivo and ex vivo control, detection and measurement of radiation in therapy, diagnostics, and related applications accomplished through scintillating fiber detection. One example includes scintillating fibers placed along a delivery guide such as a catheter for measuring applied radiation levels during radiotherapy treatments, sensing locations of a radiation source, or providing feedback of sensed radiation. Another option is to place the fibers into a positioning device such as a balloon, or otherwise in the field of the radiation delivery. The scintillating fibers provide light output levels correlating to the levels of radiation striking the fibers and comparative measurement between fibers can be used for more extensive dose mapping. Adjustments to a radiation treatment may be made as needed based on actual and measured applied dosages as determined by the fiber detectors. Characteristics of a radiation source may also be measured using scintillating materials.
    Type: Grant
    Filed: July 22, 2010
    Date of Patent: October 29, 2013
    Assignee: Hampton University
    Inventors: Cynthia E. Keppel, Paul Gueye, Christopher Sinesi
  • Patent number: 8133167
    Abstract: An apparatus and method for in vivo and ex vivo control, detection and measurements of radiation in brachytherapy accomplished through scintillating material detection. One example includes scintillating fibers placed along a delivery guide such as a catheter for measuring applied radiation levels during brachytherapy treatments, sensing locations of a radiation source or providing feedback of sensed radiation. The catheter may also be a mammosite type catheter. The scintillating fibers provide light output levels correlating to the levels of radiation striking the fibers. The output may then be used to measure and compute radiation distribution maps using Monte Carlo reconstruction simulation. Adjustments to a radiation treatment may be made as needed based on actual and measured applied dosages. Characteristics of a radiation source may also be measured using scintillating materials.
    Type: Grant
    Filed: December 28, 2009
    Date of Patent: March 13, 2012
    Assignee: Hampton University
    Inventors: Paul Gueye, Cynthia Keppel, Lawrence Tynes, Douglas Kieper
  • Publication number: 20100288934
    Abstract: An apparatus and method for in vivo and ex vivo control, detection and measurement of radiation in therapy, diagnostics, and related applications accomplished through scintillating fiber detection. One example includes scintillating fibers placed along a delivery guide such as a catheter for measuring applied radiation levels during radiotherapy treatments, sensing locations of a radiation source, or providing feedback of sensed radiation. Another option is to place the fibers into a positioning device such as a balloon, or otherwise in the field of the radiation delivery. The scintillating fibers provide light output levels correlating to the levels of radiation striking the fibers and comparative measurement between fibers can be used for more extensive dose mapping. Adjustments to a radiation treatment may be made as needed based on actual and measured applied dosages as determined by the fiber detectors. Characteristics of a radiation source may also be measured using scintillating materials.
    Type: Application
    Filed: July 22, 2010
    Publication date: November 18, 2010
    Inventors: Cynthia E. Keppel, Paul Gueye, Christopher Sinesi
  • Publication number: 20100099985
    Abstract: An apparatus and method for in vivo and ex vivo control, detection and measurements of radiation in brachytherapy accomplished through scintillating material detection. One example includes scintillating fibers placed along a delivery guide such as a catheter for measuring applied radiation levels during brachytherapy treatments, sensing locations of a radiation source or providing feedback of sensed radiation. The catheter may also be a mammosite type catheter. The scintillating fibers provide light output levels correlating to the levels of radiation striking the fibers. The output may then be used to measure and compute radiation distribution maps using Monte Carlo reconstruction simulation. Adjustments to a radiation treatment may be made as needed based on actual and measured applied dosages. Characteristics of a radiation source may also be measured using scintillating materials.
    Type: Application
    Filed: December 28, 2009
    Publication date: April 22, 2010
    Inventors: Paul Gueye, Cynthia Keppel, Lawrence Tynes, Douglas Kieper
  • Patent number: 7662083
    Abstract: An apparatus and method for in vivo and ex vivo control, detection and measurements of radiation in brachytherapy accomplished through scintillating material detection. One example includes scintillating fibers placed along a delivery guide such as a catheter for measuring applied radiation levels during brachytherapy treatments, sensing locations of a radiation source or providing feedback of sensed radiation. The catheter may also be a mammosite type catheter. The scintillating fibers provide light output levels correlating to the levels of radiation striking the fibers. The output may then be used to measure and compute radiation distribution maps using Monte Carlo reconstruction simulation. Adjustments to a radiation treatment may be made as needed based on actual and measured applied dosages. Characteristics of a radiation source may also be measured using scintillating materials.
    Type: Grant
    Filed: December 5, 2005
    Date of Patent: February 16, 2010
    Assignee: Hampton University
    Inventors: Paul Gueye, Cynthia Keppel, Lawrence Tynes, Douglas Kieper
  • Publication number: 20070129593
    Abstract: An apparatus and method for in vivo and ex vivo control, detection and measurements of radiation in brachytherapy accomplished through scintillating material detection. One example includes scintillating fibers placed along a delivery guide such as a catheter for measuring applied radiation levels during brachytherapy treatments, sensing locations of a radiation source or providing feedback of sensed radiation. The catheter may also be a mammosite type catheter. The scintillating fibers provide light output levels correlating to the levels of radiation striking the fibers. The output may then be used to measure and compute radiation distribution maps using Monte Carlo reconstruction simulation. Adjustments to a radiation treatment may be made as needed based on actual and measured applied dosages. Characteristics of a radiation source may also be measured using scintillating materials.
    Type: Application
    Filed: December 5, 2005
    Publication date: June 7, 2007
    Inventors: Paul Gueye, Cynthia Keppel, Lawrence Tynes, Douglas Kieper