Patents by Inventor Paul H. Krumrine

Paul H. Krumrine has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10309204
    Abstract: Methods of stimulating enhanced oil recovery from a post-cold heavy oil production with sand (“CHOPS”) oil-bearing formation are disclosed. The invention relates to a method of stimulating oil recovery from a post-cold heavy oil production with sand (CHOPS) oil-bearing formation. The method optionally flushes a wellbore in a post-CHOPS oil-bearing formation having at least one worm hole to expel water from the wellbore and near wellbore region; then injects a alkali metal silicide into the post-oil-bearing formation via a wellbore to introduce the alkali metal silicide into at least one worm hole within the post-oil-bearing formation. The injection step is followed by reacting the injected alkali metal silicide to stimulate oil flow within the post-CHOPS oil-bearing formation; and recovering oil from the post-CHOPS oil-bearing formation. The alkali metal silicide dispersion can also be injected into the formation in a cyclic mode of alternating injection, soak, and production periods.
    Type: Grant
    Filed: October 17, 2014
    Date of Patent: June 4, 2019
    Assignee: SIGNA CHEMISTRY, INC.
    Inventors: Paul H. Krumrine, Michael Lefenfeld, Gregory Arthur Romney, Muhammad Imran, Kelvin Dean Knorr
  • Patent number: 10240443
    Abstract: A process for altering a wettability characteristic of a carbonate formation to stimulate oil production includes selecting an oil bearing carbonate formation, injecting a silicide dispersion into the carbonate formation, and reacting the injected silicide dispersion with water. The reaction alters the wettability characteristic of the carbonate formation toward water wettability. The silicide dispersion can include an alkali metal silicide, such as sodium silicide. The reaction generates hydrogen, silicate, and heat that pressurizes the carbonate formation with the generated hydrogen, heats the carbonate formation with the generated heat, and reduces the viscosity of the hydrocarbons in the carbonate formation with the generated silicate. The reaction re-mineralizes the surfaces in the carbonate formation and alters the wettability characteristics of the carbonate formation as a calcium-silicon phase is formed. The hydrocarbons are recovered from the carbonate formation with a production well.
    Type: Grant
    Filed: October 17, 2014
    Date of Patent: March 26, 2019
    Assignee: SIGNA CHEMISTRY, INC.
    Inventors: Paul H. Krumrine, Michael Lefenfeld, Gregory Arthur Romney, Muhammad Imran, Kelvin Dean Knorr, Ralph George Jonasson
  • Patent number: 10024500
    Abstract: A method of hydraulic fracturing is provided which uses metal silicides to generate significant pressure inside a wellbore. The method comprises injecting a fracturing fluid and an aqueous or reacting fluid into the wellbore to react with the fracturing fluid. The fracturing fluid comprises metal silicide, which may be uncoated or coated, and hydrocarbon fluid. The reacting fluid comprises water or a solvent. A method of removing buildup in pipelines such as subsea pipelines which uses metal silicides to generate heat and pressure inside the pipeline is also provided. The method comprises injecting an organic slug and an aqueous slug. The organic slug comprises metal silicide and hydrocarbon fluid. The aqueous slug comprises water. Alternatively, there is also provided a method for purifying flowback water produced from a hydraulic fracturing process comprising adding metal silicide to the flowback water produced from a hydraulic fracturing process.
    Type: Grant
    Filed: August 9, 2017
    Date of Patent: July 17, 2018
    Assignee: SIGNA CHEMISTRY, INC.
    Inventors: Paul H. Krumrine, III, James S. Falcone, Jr., Michael Lefenfeld
  • Publication number: 20170336032
    Abstract: A method of hydraulic fracturing is provided which uses metal silicides to generate significant pressure inside a wellbore. The method comprises injecting a fracturing fluid and an aqueous or reacting fluid into the wellbore to react with the fracturing fluid. The fracturing fluid comprises metal silicide, which may be uncoated or coated, and hydrocarbon fluid. The reacting fluid comprises water or a solvent. A method of removing buildup in pipelines such as subsea pipelines which uses metal silicides to generate heat and pressure inside the pipeline is also provided. The method comprises injecting an organic slug and an aqueous slug. The organic slug comprises metal silicide and hydrocarbon fluid. The aqueous slug comprises water. Alternatively, there is also provided a method for purifying flowback water produced from a hydraulic fracturing process comprising adding metal silicide to the flowback water produced from a hydraulic fracturing process.
    Type: Application
    Filed: August 9, 2017
    Publication date: November 23, 2017
    Applicant: SIGNA CHEMISTRY, INC.
    Inventors: Paul H. KRUMRINE, III, James S. FALCONE, JR., Michael LEFENFELD
  • Patent number: 9791108
    Abstract: A method of hydraulic fracturing is provided which uses metal silicides to generate significant pressure inside a wellbore. The method comprises injecting a fracturing fluid and an aqueous or reacting fluid into the wellbore to react with the fracturing fluid. The fracturing fluid comprises metal silicide, which may be uncoated or coated, and hydrocarbon fluid. The reacting fluid comprises water or a solvent. A method of removing buildup in pipelines such as subsea pipelines which uses metal silicides to generate heat and pressure inside the pipeline is also provided. The method comprises injecting an organic slug and an aqueous slug. The organic slug comprises metal silicide and hydrocarbon fluid. The aqueous slug comprises water. Alternatively, there is also provided a method for purifying flowback water produced from a hydraulic fracturing process comprising adding metal silicide to the flowback water produced from a hydraulic fracturing process.
    Type: Grant
    Filed: May 4, 2017
    Date of Patent: October 17, 2017
    Assignee: SIGNA CHEMISTRY, INC.
    Inventors: Paul H. Krumrine, III, James S. Falcone, Jr., Michael Lefenfeld
  • Publication number: 20170234489
    Abstract: A method of hydraulic fracturing is provided which uses metal silicides to generate significant pressure inside a wellbore. The method comprises injecting a fracturing fluid and an aqueous or reacting fluid into the wellbore to react with the fracturing fluid. The fracturing fluid comprises metal silicide, which may be uncoated or coated, and hydrocarbon fluid. The reacting fluid comprises water or a solvent. A method of removing buildup in pipelines such as subsea pipelines which uses metal silicides to generate heat and pressure inside the pipeline is also provided. The method comprises injecting an organic slug and an aqueous slug. The organic slug comprises metal silicide and hydrocarbon fluid. The aqueous slug comprises water. Alternatively, there is also provided a method for purifying flowback water produced from a hydraulic fracturing process comprising adding metal silicide to the flowback water produced from a hydraulic fracturing process.
    Type: Application
    Filed: May 4, 2017
    Publication date: August 17, 2017
    Applicant: SIGNA CHEMISTRY, INC.
    Inventors: Paul H. KRUMRINE, III, James S. FALCONE, JR., Michael LEFENFELD
  • Patent number: 9677392
    Abstract: A method of hydraulic fracturing is provided which uses metal silicides to generate significant pressure inside a wellbore. The method comprises injecting a fracturing fluid and an aqueous or reacting fluid into the wellbore to react with the fracturing fluid. The fracturing fluid comprises metal silicide, which may be uncoated or coated, and hydrocarbon fluid. The aqueous fluid comprises water. The reacting fluid comprises water or a solvent. A method of removing buildup in pipelines such as subsea pipelines which uses metal silicides to generate heat and pressure inside the pipeline is also provided. The method comprises injecting an organic slug and an aqueous slug. The organic slug comprises metal silicide and hydrocarbon fluid. The aqueous slug comprises water. Alternatively, there is also provided a method for purifying flowback water produced from a hydraulic fracturing process comprising adding metal silicide to the flowback water produced from a hydraulic fracturing process.
    Type: Grant
    Filed: June 25, 2013
    Date of Patent: June 13, 2017
    Assignee: SIGNA CHEMISTRY, INC.
    Inventors: Paul H. Krumrine, III, James S. Falcone, Jr., Michael Lefenfeld
  • Patent number: 9657549
    Abstract: Enhanced oil recovery techniques include introduction of alkali metal silicides into subterranean reservoirs to generate hydrogen gas, heat, and alkali metal silicate solutions in situ upon contact with water. The alkali metal silicides, such as sodium silicide, are used to recover hydrocarbons, including heavier crudes where viscosity and low reservoir pressure are limiting factors. Hydrogen, which is miscible with the crude oil and can beneficiate the heavier fractions into lighter fractions naturally or with addition of catalytic materials, is generated in-situ. It. Heat is also generated at the reaction site to reduce viscosity and promote crude beneficiation. The resulting alkaline silicate solution saponifies acidic crude components to form surfactants which emulsify the crude to improve mobility toward a production well. The silicate promotes profile modification passively via consumptive reactions or actively via addition of acidic gelling agents.
    Type: Grant
    Filed: June 14, 2012
    Date of Patent: May 23, 2017
    Assignee: SIGNA CHEMISTRY, INC.
    Inventors: Paul H. Krumrine, James S. Falcone, Michael Lefenfeld
  • Patent number: 9494012
    Abstract: The invention relates to cement compositions containing a metal silicide such as an alkali metal silicide or an alkaline earth metal silicide. Upon mixing with water, the metal silicide reacts to generate hydrogen gas, a silicate, and heat—each of which is advantageous for the large variety of uses to which cements are put. The invention relates to a foamable cement composition comprising about 99.999 wt % to about 98.5 wt % of a cement, and about 0.001 wt % to about 1.5 wt % of a metal silicide or a mixture of metal silicides. Concretes and grouts containing the cement composition are also disclosed. Other embodiments provide methods for forming cement structures, including in subterranean formations and wells.
    Type: Grant
    Filed: June 14, 2012
    Date of Patent: November 15, 2016
    Assignee: SIGNA CHEMISTRY, INC.
    Inventors: James S. Falcone, Paul H. Krumrine, Michael Lefenfeld
  • Publication number: 20160265328
    Abstract: A process for altering a wettability characteristic of a carbonate formation to stimulate oil production includes selecting an oil bearing carbonate formation, injecting a silicide dispersion into the carbonate formation, and reacting the injected silicide dispersion with water. The reaction alters the wettability characteristic of the carbonate formation toward water wettability. The silicide dispersion can include an alkali metal silicide, such as sodium silicide. The reaction generates hydrogen, silicate, and heat that pressurizes the carbonate formation with the generated hydrogen, heats the carbonate formation with the generated heat, and reduces the viscosity of the hydrocarbons in the carbonate formation with the generated silicate. The reaction re-mineralizes the surfaces in the carbonate formation and alters the wettability characteristics of the carbonate formation as a calcium-silicon phase is formed. The hydrocarbons are recovered from the carbonate formation with a production well.
    Type: Application
    Filed: October 17, 2014
    Publication date: September 15, 2016
    Applicant: SIGNA CHEMISTRY, INC.
    Inventors: Paul H. KRUMRINE, Michael LEFENFELD, Gregory Arthur ROMNEY, Muhammad IMRAN, Kelvin Dean KNORR, Ralph George JONASSON
  • Publication number: 20160245060
    Abstract: Methods of stimulating enhanced oil recovery from a post-cold heavy oil production with sand (“CHOPS”) oil-bearing formation are disclosed. The invention relates to a method of stimulating oil recovery from a post-cold heavy oil production with sand (CHOPS) oil-bearing formation. The method optionally flushes a wellbore in a post-CHOPS oil-bearing formation having at least one worm hole to expel water from the wellbore and near wellbore region; then injects a alkali metal silicide into the post-oil-bearing formation via a wellbore to introduce the alkali metal silicide into at least one worm hole within the post-oil-bearing formation. The injection step is followed by reacting the injected alkali metal silicide to stimulate oil flow within the post-CHOPS oil-bearing formation; and recovering oil from the post-CHOPS oil-bearing formation. The alkali metal silicide dispersion can also be injected into the formation in a cyclic mode of alternating injection, soak, and production periods.
    Type: Application
    Filed: October 17, 2014
    Publication date: August 25, 2016
    Inventors: Paul H. KRUMRINE, Michael LEFENFELD, Gregory Arthur ROMNEY, Muhammad IMRAN, Kelvin Dean KNORR
  • Publication number: 20150191993
    Abstract: The invention relates to cement compositions containing a metal silicide such as an alkali metal silicide or an alkaline earth metal silicide. Upon mixing with water, the metal silicide reacts to generate hydrogen gas, a silicate, and heat—each of which is advantageous for the large variety of uses to which cements are put. The invention relates to a foamable cement composition comprising about 99.999 wt % to about 98.5 wt % of a cement, and about 0.001 wt % to about 1.5 wt % of a metal silicide or a mixture of metal silicides. Concretes and grouts containing the cement composition are also disclosed. Other embodiments provide methods for forming cement structures, including in subterranean formations and wells.
    Type: Application
    Filed: June 14, 2012
    Publication date: July 9, 2015
    Applicant: SiGNa Chemistry, Inc.
    Inventors: James S. Falcone, Paul H. Krumrine, Michael Lefenfeld
  • Publication number: 20140196896
    Abstract: Enhanced oil recovery techniques include introduction of alkali metal silicides into subterranean reservoirs to generate hydrogen gas, heat, and alkali metal silicate solutions in situ upon contact with water. The alkali metal silicides, such as sodium silicide, are used to recover hydrocarbons, including heavier crudes where viscosity and low reservoir pressure are limiting factors. Hydrogen, which is miscible with the crude oil and can beneficiate the heavier fractions into lighter fractions naturally or with addition of catalytic materials, is generated in-situ. It. Heat is also generated at the reaction site to reduce viscosity and promote crude beneficiation. The resulting alkaline silicate solution saponifies acidic crude components to form surfactants which emulsify the crude to improve mobility toward a production well. The silicate promotes profile modification passively via consumptive reactions or actively via addition of acidic gelling agents.
    Type: Application
    Filed: June 14, 2012
    Publication date: July 17, 2014
    Applicant: SIGNA CHEMISTRY, INC.
    Inventors: Paul H. Krumrine, James S. Falcone, Michael Lefenfeld
  • Publication number: 20130341023
    Abstract: A method of hydraulic fracturing is provided which uses metal silicides to generate significant pressure inside a wellbore. The method comprises injecting a fracturing fluid and an aqueous or reacting fluid into the wellbore to react with the fracturing fluid. The fracturing fluid comprises metal silicide, which may be uncoated or coated, and hydrocarbon fluid. The aqueous fluid comprises water. The reacting fluid comprises water or a solvent. A method of removing buildup in pipelines such as subsea pipelines which uses metal silicides to generate heat and pressure inside the pipeline is also provided. The method comprises injecting an organic slug and an aqueous slug. The organic slug comprises metal silicide and hydrocarbon fluid. The aqueous slug comprises water. Alternatively, there is also provided a method for purifying flowback water produced from a hydraulic fracturing process comprising adding metal silicide to the flowback water produced from a hydraulic fracturing process.
    Type: Application
    Filed: June 25, 2013
    Publication date: December 26, 2013
    Inventors: Paul H. KRUMRINE, III, James S. FALCONE, JR., Michael Lefenfeld