Patents by Inventor Paul Ingersoll

Paul Ingersoll has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20040159881
    Abstract: A semiconductor device (30) comprises an underlying insulating layer (34), an overlying insulating layer (42) and a charge storage layer (36) between the insulating layers (34, 42). The charge storage layer (36) and the overlying insulating layer (42) form an interface, where at least a majority of charge in the charge storage layer (36) is stored. This can be accomplished by forming a charge storage layer (36) with different materials such as silicon and silicon germanium layers or n-type and p-type material layers, in one embodiment. In another embodiment, the charge storage layer (36) comprises a dopant that is graded. By storing at least a majority of the charge at the interface between the charge storage layer (36) and the overlying insulating layer (42), the leakage of charge through the underlying insulating layer is decreased allowing for a thinner underlying insulating layer (34) to be used.
    Type: Application
    Filed: February 13, 2004
    Publication date: August 19, 2004
    Inventors: Gowrishankar L. Chindalore, Frank K. Baker, Paul A. Ingersoll, Alexander B. Hoefler
  • Patent number: 6770929
    Abstract: A method for achieving a uniform planar surface by a chemical mechanical polish includes surrounding an active area or array to be polished with a border of the active material such that the border is wider than a single active area within the array and is preferably spaced from the outermost active area by the same distance as the distance between active areas within the array.
    Type: Grant
    Filed: November 2, 2001
    Date of Patent: August 3, 2004
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Rana P. Singh, Paul A. Ingersoll
  • Publication number: 20040080984
    Abstract: A non volatile memory includes a plurality of transistors having a non conductive storage medium. The transistors are erased by injecting holes into the storage medium from both the source edge region and drain edge region of the transistor. In one example, the storage medium is made from silicon nitride isolated from the underlying substrate and overlying gate by silicon dioxide. The injection of holes in the storage medium generates two hole distributions having overlapping portions. The combined distribution of the overlapping portions is above at least a level of the highest concentration of program charge in the overlap region of the storage medium. In one example, the transistors are programmed by hot carrier injection. In some examples, the sources of groups of transistors of the memory are decoded.
    Type: Application
    Filed: October 25, 2002
    Publication date: April 29, 2004
    Inventors: Craig T. Swift, Frank K. Baker,, Erwin J. Prinz, Paul A. Ingersoll
  • Publication number: 20040070030
    Abstract: A semiconductor device (10) has a highly doped layer (26) having a first conductivity type uniformly implanted into the semiconductor substrate (20). An oxide-nitride-oxide structure (36, 38, 40) is formed over the semiconductor substrate (20). A halo region (46) having the first conductivity type is implanted at an angle in only a drain side of the oxide-nitride-oxide structure and extends under the oxide-nitride-oxide structure a predetermined distance from an edge of the oxide-nitride-oxide structure. A source (52) and drain (54) having a second conductivity type are implanted into the substrate (20). The resulting non-volatile memory cell provides a low natural threshold voltage to minimize threshold voltage drift during a read cycle. In addition, the use of the halo region (46) on the drain side allows a higher programming speed, and the highly doped layer (26) allows the use of a short channel device.
    Type: Application
    Filed: October 9, 2002
    Publication date: April 15, 2004
    Inventors: Gowrishankar L. Chindalore, Paul A. Ingersoll, Craig T. Swift, Alexander B. Hoefler
  • Patent number: 6713812
    Abstract: A memory device (70) that uses a non-volatile storage element (38), such as nitride, has reduced read disturb, which is the problem of tending to increase the threshold voltage of a memory device (70) during a read. To reduce this effect, the memory device (70) uses a counterdoped channel (86) to lower the natural threshold voltage of the device (70). This counterdoping can even be of sufficient dosage to reverse the conductivity type of the channel (86) and causing a negative natural threshold voltage. This allows for a lower gate voltage during read to reduce the adverse effect of performing a read. An anti-punch through (ATP) region (74) below the channel (86) allows for the lightly doped or reversed conductivity type channel (86) to avoid short channel leakage. A halo implant (46) on the drain side (54, 53) assists in hot carrier injection (HCI) so that the HCI is effective even though the channel (86) is lightly doped or of reversed conductivity type.
    Type: Grant
    Filed: October 9, 2002
    Date of Patent: March 30, 2004
    Assignee: Motorola, Inc.
    Inventors: Alexander B. Hoefler, Gowrishankar L. Chindalore, Paul A. Ingersoll, Craig T. Swift
  • Publication number: 20030113962
    Abstract: A semiconductor device (30) comprises an underlying insulating layer (34), an overlying insulating layer (42) and a charge storage layer (36) between the insulating layers (34, 42). The charge storage layer (36) and the overlying insulating layer (42) form an interface, where at least a majority of charge in the charge storage layer (36) is stored. This can be accomplished by forming a charge storage layer (36) with different materials such as silicon and silicon germanium layers or n-type and p-type material layers, in one embodiment. In another embodiment, the charge storage layer (36) comprises a dopant that is graded. By storing at least a majority of the charge at the interface between the charge storage layer (36) and the overlying insulating layer (42), the leakage of charge through the underlying insulating layer is decreased allowing for a thinner underlying insulating layer (34) to be used.
    Type: Application
    Filed: December 14, 2001
    Publication date: June 19, 2003
    Inventors: Gowrishankar L. Chindalore, Frank K. Baker, Paul A. Ingersoll, Alexander B. Hoefler
  • Publication number: 20030098492
    Abstract: A semiconductor device structure has trenches of two widths or more. The smallest widths are to maximize density. The greater widths may be required because of more demanding isolation, for example, in the case of non-volatile memories. These more demanding, wider isolation trenches are lined with a high quality grown oxide as part of the process for achieving the desired result of high quality isolation. For the case of the narrowest trenches, the additional liner causes the aspect ratio, the ratio of the depth of the trench to the width of the trench, to increase. Subsequent deposition of insulating material to fill the trenches with the highest aspect ratios can result in voids that can ultimately result in degraded yields. These voids are avoided by etching at least a portion of the liners of those trenches with the highest aspect ratios to reduce the aspect ratio to acceptable levels.
    Type: Application
    Filed: January 9, 2002
    Publication date: May 29, 2003
    Inventors: Rana P. Singh, Paul A. Ingersoll
  • Patent number: 6518146
    Abstract: A semiconductor device has both a logic section and a non-volatile memory (NVM) section. Transistors in both sections are separated by trench isolation. The logic isolation has narrower trenches than NVM trenches and both types of trenches have corners at the tops thereof. The trenches are lined by growing an oxide that is necessarily to take care of the plasma damage of the substrate, which is preferably silicon, that occurs during the formation of the trenches. These oxide liners are grown to a greater thickness in the NVM trenches than in the logic trenches to obtain a greater degree of corner rounding in the NVM trenches. This growth differential is achieved by selectively implanting the NVM trenches with a species that speeds oxide growth or selectively implanting the logic trenches with a species that retards oxide growth. As a further alternative, the NVM trenches can be implanted with a growth enhancing species and the logic trenches with a retarding species.
    Type: Grant
    Filed: January 9, 2002
    Date of Patent: February 11, 2003
    Assignee: Motorola, Inc.
    Inventors: Rana P. Singh, Paul A. Ingersoll
  • Publication number: 20020037628
    Abstract: A method for achieving a uniform planar surface by a chemical mechanical polish includes surrounding an active area or array to be polished with a border of the active material such that the border is wider than a single active area within the array and is preferably spaced from the outermost active area by the same distance as the distance between active areas within the array.
    Type: Application
    Filed: November 2, 2001
    Publication date: March 28, 2002
    Inventors: Rana P. Singh, Paul A. Ingersoll
  • Patent number: 6358816
    Abstract: A method for achieving a uniform planar surface by a chemical mechanical polish includes surrounding an active area or array to be polished with a border of the active material such that the border is wider than a single active area within the array and is preferably spaced from the outermost active area by the same distance as the distance between active areas within the array.
    Type: Grant
    Filed: September 5, 2000
    Date of Patent: March 19, 2002
    Assignee: Motorola, Inc.
    Inventors: Rana P. Singh, Paul A. Ingersoll