Patents by Inventor Paul J. Bania

Paul J. Bania has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7008489
    Abstract: An alpha-beta, titanium-base alloy with improved ductility at high strength levels compared to commercially available alloys, such as Ti-17. The alloy exhibits at least a 20% improvement in ductility at a given strength level compared to Ti-17. The alloy comprises, in weight %, 3.2 to 4.2 Al, 1.7 to 2.3 Sn, 2 to 2.6 Zr, 2.9 to 3.5 Cr, 2.3 to 2.9 Mo, 2 to 2.6 V, 0.25 to 0.75 Fe, 0.01 to 0.8 Si, 0.21 max. Oxygen and balance Ti and incidental impurities.
    Type: Grant
    Filed: May 22, 2003
    Date of Patent: March 7, 2006
    Assignee: Ti-Pro LLC
    Inventor: Paul J. Bania
  • Publication number: 20040231756
    Abstract: An alpha-beta, titanium-base alloy with improved ductility at high strength levels compared to commercially available alloys, such as Ti-17. The alloy exhibits at least a 20% improvement in ductility at a given strength level compared to Ti-17. The alloy comprises, in weight %, 3.2 to 4.2 Al, 1.7 to 2.3 Sn, 2 to 2.6 Zr, 2.9 to 3.5 Cr, 2.3 to 2.9 Mo, 2 to 2.6 V, 0.25 to 0.75 Fe, 0.01 to 0.8 Si, 0.21 max. Oxygen and balance Ti and incidental impurities.
    Type: Application
    Filed: May 22, 2003
    Publication date: November 25, 2004
    Inventor: Paul J. Bania
  • Patent number: 5358686
    Abstract: A titanium-base alloy, and weldment made therefrom, consisting essentially of, in weight percent, aluminum 4 to 5.5, preferably 5.0, tin up to 2.5, preferably 0.5 to 1.5 or 1; zirconium up to 2.5, preferably 0.5 to 1.5 or about 1; vanadium 0.5 to 2.5, preferably 0.5 to 1.5 or about 1; molybdenum 0.3 to 1, preferably, 0.66 to 1 or about 0.8; silicon up to 0.15, preferably 0.07 to 0.13 or about 0.1; oxygen 0.04 to 0.12, preferably 0.07 to 0.11 or about 0.09; iron 0.01 to 0.12, preferably 0.01 to 0.09 or about 0.07 and balance titanium and incidental impurities.
    Type: Grant
    Filed: February 17, 1993
    Date of Patent: October 25, 1994
    Inventors: Warren M. Parris, James A. Hall, Paul J. Bania, Ivan L. Caplan
  • Patent number: 5342458
    Abstract: An alpha-beta titanium-base alloy having a good combination of strength and ductility with a relatively low cost composition. The composition, in percent by weight, is 5.5 to 6.5 aluminum, 1.5 to 2.2 iron, 0.07 to 0.13 silicon and balance titanium. The alloy may have oxygen restricted in an amount up to 0.25%. The alloy may be hot-worked solely at a temperature above the beta transus temperature of the alloy to result in low-cost processing with improved product yields. The hot-working may include forging, which may be conducted at a temperature of 25.degree. to 450.degree. F. above the beta transus temperature of the alloy. The hot-working may also include hot-rolling, which also may be conducted at a temperature of 25.degree. to 450.degree. F. above the beta transus temperature of the alloy.
    Type: Grant
    Filed: March 18, 1993
    Date of Patent: August 30, 1994
    Assignee: Titanium Metals Corporation
    Inventors: Roy E. Adams, Warran M. Parris, Paul J. Bania
  • Patent number: 5294267
    Abstract: A metastable beta titanium-base alloy of Ti-Fe-Mo-Al, with a MoEq. greater than 16, preferably greater than 16.5 and preferably 16.5 to 20.5 and more preferably about 16.5. The alloy desirably exhibits a minimum percent reduction in area (% RA) of 40%. Preferred composition limits for the alloy, in weight percent, are 4 to 5 Fe, 4 to 7 Mo, 1 to 2 Al, up to 0.25 oxygen and balance Ti.
    Type: Grant
    Filed: December 4, 1992
    Date of Patent: March 15, 1994
    Assignee: Titanium Metals Corporation
    Inventors: Paul J. Bania, Warren M. Parris
  • Patent number: 5219521
    Abstract: An alpha-beta titanium-base alloy having a good combination of strength and ductility with a relatively low cost composition. The composition, in percent by weight, is 5.5 to 6.5 aluminum, 1.5 to 2.2 iron, 0.07 to 0.13 silicon and balance titanium. The alloy may have oxygen restricted in an amount up to 0.25%. The alloy may be hot-worked solely at a temperature above the beta transus temperature of the alloy to result in low.TM.cost processing with improved product yields. The hot-working may include forging, which may be conducted at a temperature of 25.degree. to 450.degree. F. above the beta transus temperature of the alloy. The hot-working may also include hot-rolling, which also may be conducted at a temperature of 25.degree. to 450.degree. F. above the beta transus temperature of the alloy.
    Type: Grant
    Filed: July 29, 1991
    Date of Patent: June 15, 1993
    Assignee: Titanium Metals Corporation
    Inventors: Roy E. Adams, Warran M. Parris, Paul J. Bania
  • Patent number: 5160554
    Abstract: An alpha-beta titanium-base alloy, and fastener made therefrom. The alloy has a combination of an ultimate tensile strength of at least 220 ksi with a minimum elongation of 7% in the solution-treated and aged condition. The alloy has a total beta stabilizer content of 15 to 20%, a total alpha stabilizer content of 1.5 to 3.5% and balance titanium. The alloy may have an aluminum equivalence of at least 3.0%, preferably 4.0%. The alloy may have an aluminum content of at least 1.5%. The beta stabilizer element may be at least one vanadium, molybdenum or iron and the alpha stabilizer element may be one or more of aluminum, oxygen, carbon and nitrogen.
    Type: Grant
    Filed: August 27, 1991
    Date of Patent: November 3, 1992
    Assignee: Titanium Metals Corporation
    Inventors: Paul J. Bania, Roy E. Adams, James Stokes
  • Patent number: 4980127
    Abstract: A titanium-base alloy characterized by a combination of good oxidation resistance at temperatures of at least 1500.degree. F. and good cold rollability. The alloy consists essentially of, in weight percent, molybdenum 14 to 20, niobium 1.5 to 5.5, silicon 0.15 to 0.55, aluminum up to 3.5, oxygen up to 0.25 and balance titanium. Preferably, molybdenum is 14 to 16, niobium is 2.5 to 3.5, silicon is 0.15 to 0.25, aluminum is 2.5 to 3.5 and oxygen is 0.12 to 0.16. The alloy may be in the form of a cold reduced sheet or foil product having a thickness of less than 0.1 inch. This product may be produced by cold rolling to effect a reduction within the range of 10 to 80%.
    Type: Grant
    Filed: May 1, 1989
    Date of Patent: December 25, 1990
    Assignee: Titanium Metals Corporation of America (TIMET)
    Inventors: Warren M. Parris, Paul J. Bania
  • Patent number: 4966816
    Abstract: A pack assembly for use in hot rolling a material sensitive to heat loss, such as gamma titanium aluminide. The pack assembly has a pair of opposed deformable metal cover plates adjacent opposite outer major surfaces of at least one flat product of the material to be hot rolled positioned between the cover plates. A continuous thermal barrier is positioned between each of the outer major surfaces of each of the cover plates.
    Type: Grant
    Filed: June 7, 1989
    Date of Patent: October 30, 1990
    Assignee: Titanium Metals Corporation of America (TIMET)
    Inventors: Tommie L. Wardlaw, Paul J. Bania
  • Patent number: 4943412
    Abstract: An alpha-beta titanium base alloy comprising, in weight percent, 0.04 to 0.10 silicon and 0.03 to 0.08 carbon, characterized by an increase in strength over that of the alloy lacking the silicon and carbon additions. The alloy may additionally comprise 6 aluminum, 4 vanadium, up to 0.3 iron and up to 0.25 oxygen.
    Type: Grant
    Filed: May 1, 1989
    Date of Patent: July 24, 1990
    Assignee: Timet
    Inventors: Paul J. Bania, Warren M. Parris
  • Patent number: 4738822
    Abstract: A titanium-base alloy having good elevated temperature properties, particularly creep resistance in the 950.degree. to 1100.degree. F. temperature range. The alloy consists essentially of, in weight percent, aluminum 5.5 to 6.5, tin 2.00 to 4.00, preferably 2.25 to 3.25, zirconium 3.5 to 4.5, molybdenum 0.3 to 0.5, silicon above 0.35 to 0.55, iron less than 0.03, oxygen up to 0.14, preferably up to 0.09 and balance titanium.
    Type: Grant
    Filed: October 31, 1986
    Date of Patent: April 19, 1988
    Assignee: Titanium Metals Corporation of America (TIMET)
    Inventor: Paul J. Bania
  • Patent number: 4728364
    Abstract: The production of titanium articles that are free from low-density inclusions by the use of titanium sponge particles for melting which particles have substantially a maximum particle size of -6 mesh and finer, preferably -8 mesh and finer.
    Type: Grant
    Filed: April 29, 1987
    Date of Patent: March 1, 1988
    Assignee: Titanium Metals Corporation of America (TIMET)
    Inventor: Paul J. Bania
  • Patent number: 4678506
    Abstract: The production of titanium articles that are free from low-density inclusions by the use of titanium sponge particles for melting which particles have substantially a maximum particle size of -6 mesh and finer, preferably -8 mesh and finer.
    Type: Grant
    Filed: August 11, 1986
    Date of Patent: July 7, 1987
    Assignee: Titanium Metals Corporation of America (TIMET)
    Inventor: Paul J. Bania