Patents by Inventor Paul J. DeGroot

Paul J. DeGroot has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9095718
    Abstract: A medical device and associated method for controlling a cardiac pacing therapy sense a first cardiac signal including events corresponding to cardiac electrical events and a second cardiac signal including events corresponding to cardiac hemodynamic events. A processor is enabled to measure a cardiac conduction time interval using the first cardiac signal and control a signal generator to deliver a pacing therapy. A pacing control parameter is adjusted to a plurality of settings during the pacing therapy delivery. A hemodynamic parameter value is measured from the second cardiac signal during application of each of the control parameter settings. The processor identifies an optimal setting from the plurality of settings and solves for a patient-specific equation defining the pacing control parameter as a function of the cardiac conduction time interval.
    Type: Grant
    Filed: April 3, 2013
    Date of Patent: August 4, 2015
    Assignee: Medtronic, Inc.
    Inventors: Xusheng Zhang, Paul J DeGroot, Jeffrey M Gillberg, Thomas J Mullen, Aleksandre T Sambelashvili
  • Patent number: 9002443
    Abstract: A medical device and associated method for detecting and treating tachyarrhythmias acquires a cardiac signal using electrodes coupled to a sensing module. Cardiac events are sensed from the cardiac signal and a processing module computes a first morphology metric for each sensed cardiac event occurring during a time segment of the cardiac signal. The first morphology metrics corresponding to an event originating in a ventricular chamber are counted. The first processing module computes a second morphology metric for the time segment of the cardiac signal in response to the count of the first morphology metrics meeting a threshold number of events. The time segment is classified as a shockable segment in response to the second morphology metric meeting a detection criterion.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: April 7, 2015
    Assignee: Medtronic, Inc.
    Inventors: Xusheng Zhang, Mark L. Brown, Paul J. DeGroot, Saul E. Greenhut, Troy E. Jackson
  • Patent number: 8996101
    Abstract: A method and device for detecting a cardiac event that includes sensing cardiac electrical signals representative of electrical activity of a heart of a patient, detecting the cardiac event in response to the sensed cardiac signals, determining an indication of signal reliability corresponding to the sensed cardiac signals as being one of a reliable signal and a not reliable signal, and switching operation of the device between a first mode of determining whether the sensed signal is one of treatable and not treatable and a second mode of determining whether the sensed signal is one of treatable and not treatable in response to the determined indication of signal reliability.
    Type: Grant
    Filed: April 27, 2012
    Date of Patent: March 31, 2015
    Assignee: Medtronic, Inc.
    Inventors: Xusheng Zhang, Teresa A. Whitman, Paul J. DeGroot, Mark L. Brown, Jeffrey M. Gillberg
  • Publication number: 20140330326
    Abstract: Implantable cardiac systems and methods for providing substernal pacing in an ICD system are described. In one example, an implantable cardiac system comprises an ICD system and an implantable leadless pacing device (LPD) communicatively coupled to the ICD system. The ICD system includes an ICD and an implantable defibrillation lead having a proximal portion coupled to the ICD and a distal portion having a defibrillation electrode configured to deliver a defibrillation shock to a heart of the patient. The LPD includes a housing, a first electrode on the housing, a second electrode on the housing, and a pulse generator within the housing and electrically coupled to the first electrode and the second electrode. The housing of the LPD is implanted substantially within an anterior mediastinum of the patient and the pulse generator is configured to deliver pacing pulses to a heart via the first and second electrodes.
    Type: Application
    Filed: April 25, 2014
    Publication date: November 6, 2014
    Applicant: Medtronic, Inc.
    Inventors: Amy E. Thompson-Nauman, Melissa G.T. Christie, Paul J. DeGroot, Rick D. McVenes
  • Publication number: 20140330328
    Abstract: Techniques and methods for determining the number and type of leads that are connected to an implantable medical device (IMD) system are disclosed. The IMD system is configured having at least two modes of operation, the modes of operation corresponding to the number and type of leads that are coupled to the IMD system. In accordance with aspects of the disclosure, one of the at least two modes may be selected based on the determination of the number and type of leads that are connected to the IMD system.
    Type: Application
    Filed: May 6, 2014
    Publication date: November 6, 2014
    Applicant: Medtronic, Inc.
    Inventors: Melissa G.T. Christie, Amy E. Thompson-Nauman, Becky L. Dolan, Paul J. DeGroot, Rick D. McVenes
  • Publication number: 20140330331
    Abstract: Implantable leadless cardiac pacing systems and methods for providing substernal pacing using the leadless cardiac pacing systems are described. In one embodiment, an implantable leadless cardiac pacing system includes a housing, a first electrode on the housing, a second electrode on the housing, and a pulse generator within the housing and electrically coupled to the first electrode and the second electrode. The housing is implanted substantially within an anterior mediastinum of a patient and the pulse generator is configured to deliver pacing pulses to a heart of the patient via a therapy vector formed between the first and second electrodes.
    Type: Application
    Filed: April 25, 2014
    Publication date: November 6, 2014
    Applicant: Medtronic, Inc.
    Inventors: Amy E. Thompson-Nauman, Melissa G.T. Christie, Paul J. DeGroot, Rick D. McVenes
  • Publication number: 20140330325
    Abstract: An implantable cardiac defibrillator (ICD) system includes an ICD implanted subcutaneously in a patient, a defibrillation lead having a proximal portion coupled to the ICD and a distal portion having a defibrillation electrode configured to deliver a defibrillation or cardioversion shock to a heart of the patient, and a pacing lead that includes a distal portion having one or more electrodes and a proximal portion coupled to the ICD. The distal portion of the pacing lead is implanted at least partially along a posterior side of a sternum of the patient within the anterior mediastinum. The ICD is configured to provide pacing pulses to the heart of the patient via the pacing lead and provide defibrillation shocks to the patient via the defibrillation lead. As such, the implantable cardiac system provides pacing from the substernal space for an extravascular ICD system.
    Type: Application
    Filed: April 25, 2014
    Publication date: November 6, 2014
    Applicant: Medtronic, Inc.
    Inventors: Amy E. Thompson-Nauman, Melissa G.T. Christie, Paul J. DeGroot, Rick D. McVenes, Becky L. Dolan
  • Publication number: 20140330327
    Abstract: Substernal implantable cardioveter-defibrillator (ICD) systems and methods for providing substernal electrical stimulation therapy to treat malignant tachyarrhythmia, e.g., ventricular tachycardia (VT) and ventricular fibrillation (VF) are described. In one example, an implantable cardioveter-defibrillator (ICD) system includes an ICD implanted in a patient and an implantable medical electrical lead. The lead includes an elongated lead body having a proximal end and a distal portion, a connector at the proximal end of the lead body configured to couple to the ICD, and one or more electrodes along the distal portion of the elongated lead body. The distal portion of the elongated lead body of the lead is implanted substantially within an anterior mediastinum of the patient and the ICD is configured to deliver electrical stimulation to a heart of the patient using the one or more electrodes.
    Type: Application
    Filed: April 25, 2014
    Publication date: November 6, 2014
    Applicant: Medtronic, Inc.
    Inventors: Amy E. Thompson-Nauman, Melissa G.T. Christie, Paul J. DeGroot, Rick D. McVenes, Becky L. Dolan
  • Patent number: 8876727
    Abstract: A method and system of detecting phrenic nerve stimulation in a patient that includes detecting an activation event, obtaining a heart sound signal of a patient from an implanted heart sound sensor, determining that an electrical stimulation has been applied to the patient, in response to detecting the activation event, monitoring a portion of the heart sound signal, the portion defined by a predetermined window after the application of the electrical stimulation, and determining whether phrenic nerve stimulation occurred based on the portion of the heart sound signal.
    Type: Grant
    Filed: May 17, 2012
    Date of Patent: November 4, 2014
    Assignee: Medtronic, Inc.
    Inventors: Xusheng Zhang, Jeffrey M. Gillberg, Thomas J. Mullen, Paul J. DeGroot
  • Publication number: 20140276160
    Abstract: A medical device and associated method for detecting and treating tachyarrhythmias acquires a cardiac signal using electrodes coupled to a sensing module. Cardiac events are sensed from the cardiac signal and a processing module computes a first morphology metric for each sensed cardiac event occurring during a time segment of the cardiac signal. The first morphology metrics corresponding to an event originating in a ventricular chamber are counted. The first processing module computes a second morphology metric for the time segment of the cardiac signal in response to the count of the first morphology metrics meeting a threshold number of events. The time segment is classified as a shockable segment in response to the second morphology metric meeting a detection criterion.
    Type: Application
    Filed: March 15, 2013
    Publication date: September 18, 2014
    Applicant: MEDTRONIC, INC.
    Inventors: Xusheng Zhang, Mark L. Brown, Paul J. DeGroot, Saul E. Greenhut, Troy E. Jackson
  • Publication number: 20130268017
    Abstract: A medical device and associated method for controlling a cardiac pacing therapy sense a first cardiac signal including events corresponding to cardiac electrical events and a second cardiac signal including events corresponding to cardiac hemodynamic events. A processor is enabled to measure a cardiac conduction time interval using the first cardiac signal and control a signal generator to deliver a pacing therapy. A pacing control parameter is adjusted to a plurality of settings during the pacing therapy delivery. A hemodynamic parameter value is measured from the second cardiac signal during application of each of the control parameter settings. The processor identifies an optimal setting from the plurality of settings and solves for a patient-specific equation defining the pacing control parameter as a function of the cardiac conduction time interval.
    Type: Application
    Filed: April 3, 2013
    Publication date: October 10, 2013
    Applicant: Medtronic, Inc.
    Inventors: Xusheng Zhang, Paul J. DeGroot, Jeffrey M. Gillberg, Thomas J. Mullen, Aleksandre T. Sambelashvili
  • Publication number: 20130237873
    Abstract: A method and device for detecting a cardiac event that includes sensing cardiac electrical signals representative of electrical activity of a heart of a patient, detecting the cardiac event in response to the sensed cardiac signals, determining an indication of signal reliability corresponding to the sensed cardiac signals as being one of a reliable signal and a not reliable signal, and switching operation of the device between a first mode of determining whether the sensed signal is one of treatable and not treatable and a second mode of determining whether the sensed signal is one of treatable and not treatable in response to the determined indication of signal reliability.
    Type: Application
    Filed: April 27, 2012
    Publication date: September 12, 2013
    Inventors: Xusheng Zhang, Teresa A. Whitman, Paul J. DeGroot, Mark L. Brown, Jeffrey M. Gilberg
  • Publication number: 20130237872
    Abstract: Techniques for reducing inappropriate tachyarrhythmia therapy and associated medical device systems are described. In some examples a processor is enabled to receive a cardiac electrical signal representative of electrical activity of a heart of a patient and provide an indication of cardiac electrical signal reliability. A heart sound analyzing module is enabled to receive the indication of cardiac electrical signal reliability and a heart sound signal representing sounds generated by the heart of the patient and generated by a heart sound sensor. The heart sound analyzing module selectively determines an ensemble averaged heart sound signal or detects a plurality of heart sounds from the heart sound signal in response to the indication of cardiac electrical signal reliability.
    Type: Application
    Filed: April 27, 2012
    Publication date: September 12, 2013
    Inventors: Xusheng Zhang, Teresa A. Whitman, Paul J. DeGroot, Mark L. Brown, Jeffrey M. Gillberg
  • Patent number: 8478399
    Abstract: An implantable medical device and method are provided for determining if a patient is in a substantially horizontal position and delaying a programmed cardioversion/defibrillation shock therapy in response to determining the patient is in a substantially horizontal position. In various embodiments, the shock therapy may be delayed by adjusting tachycardia detection criteria or scheduling the shock therapy after a maximum tachycardia episode duration.
    Type: Grant
    Filed: January 31, 2006
    Date of Patent: July 2, 2013
    Inventors: Paul J. Degroot, Karel F. A. A. Smits, William J. Flickinger
  • Patent number: 8374686
    Abstract: System and method for assessing a likelihood of a patient to experience a cardiac arrhythmia. A biological sensor is configured to sense biological parameters of the patient. A processor is coupled to the biological sensor and is configured to determine the likelihood of the patient experiencing a cardiac arrhythmia based, at least in part, on a combination of the biological parameters, the combination dynamically weighting each of the plurality of biological parameters based on another one of the plurality of biological parameters.
    Type: Grant
    Filed: June 3, 2010
    Date of Patent: February 12, 2013
    Assignee: Medtronic, Inc.
    Inventors: Raja N. Ghanem, Paul J. DeGroot
  • Publication number: 20120296387
    Abstract: A method of delivering phrenic nerve stimulation in a medical device system that includes detecting an activation event, delivering phrenic nerve stimulation therapy in response to the detected activation event, sensing a heart sound signal, in response to the delivered phrenic nerve stimulation therapy, monitoring a portion of the sensed heart sound signal, the portion defined by a predetermined window ocurring after the delivered phrenic nerve stimulation therapy, and determining whether the delivered phrenic nerve stimulation therapy was successful in response to the monitoring.
    Type: Application
    Filed: May 17, 2012
    Publication date: November 22, 2012
    Inventors: Xusheng Zhang, Jeffrey M. Gillberg, Thomas J. Mullen, Paul J. DeGroot
  • Publication number: 20120296388
    Abstract: A method and system of detecting phrenic nerve stimulation in a patient that includes detecting an activation event, obtaining a heart sound signal of a patient from an implanted heart sound sensor, determining that an electrical stimulation has been applied to the patient, in response to detecting the activation event, monitoring a portion of the heart sound signal, the portion defined by a predetermined window after the application of the electrical stimulation, and determining whether phrenic nerve stimulation occurred based on the portion of the heart sound signal.
    Type: Application
    Filed: May 17, 2012
    Publication date: November 22, 2012
    Inventors: Xusheng Zhang, Jeffrey M. Gillberg, Thomas J. Mullen, Paul J. DeGroot
  • Publication number: 20120232606
    Abstract: An apparatus and method to discriminate cardiac events by sensing atrial and ventricular depolarizations having associated refractory periods thereafter. A fast ventricular rate is detected in response to the sensed ventricular depolarizations. Responsive to detecting the fast ventricular rate, at least one stimulus pulse is delivered to atrial tissue within the associated refractory period of the ventricle but outside of an associated refractory period of the stimulated atrial tissue. A ventricular response to the atrial tissue stimulus pulse is determined, and the cardiac event is discriminated based on the ventricular response to the atrial tissue stimulus pulse.
    Type: Application
    Filed: January 25, 2012
    Publication date: September 13, 2012
    Inventors: Yong-Fu Xiao, Jeffrey M. Gillberg, Paul J. DeGroot, Eduardo N. Warman, Scott J. Brabec, John L. Sommer, Jon F. Urban, Lepeng Zeng
  • Publication number: 20120232605
    Abstract: An apparatus and method to discriminate cardiac events by sensing atrial and ventricular depolarizations having associated refractory periods thereafter. A fast ventricular rate is detected in response to the sensed ventricular depolarizations. Responsive to detecting the fast ventricular rate, at least one stimulus pulse is delivered to atrial tissue within the associated refractory period of the ventricle but outside of an associated refractory period of the stimulated atrial tissue. A ventricular response to the atrial tissue stimulus pulse is determined, and the cardiac event is discriminated based on the ventricular response to the atrial tissue stimulus pulse.
    Type: Application
    Filed: January 25, 2012
    Publication date: September 13, 2012
    Inventors: Yong-Fu Xiao, Jeffrey M. Gillberg, Paul J. DeGroot, Eduardo N. Warman, Scott J. Brabec, John L. Sommer, Jon F. Urban, Lepeng Zeng
  • Patent number: 8170663
    Abstract: A system and method for delivering both anti-tachy pacing (ATP) therapy and high-voltage shock therapy in response to detection of abnormal cardiac rhythms is disclosed. The system controls the time between delivering ATP therapy and the charging of high-voltage capacitors in preparation for shock delivery based on a predetermined set of criteria. In one embodiment, the inventive system operates in an ATP During Capacitor Charging (ATP-DCC) mode wherein all, or substantially all, of the ATP therapy is delivered during charging of the high-voltage capacitors. Based on evaluation of the predetermined set of criteria, the system may switch to an additional ATP Before Capacitor Charging (ATP-BCC) mode, wherein substantially all of the ATP therapy is delivered prior to charging of the high-voltage capacitor. According to one aspect of the invention, the predetermined set of criteria is based, at least in part, on the effectiveness of previously-delivered ATP therapy.
    Type: Grant
    Filed: March 16, 2007
    Date of Patent: May 1, 2012
    Assignee: Medtronic, Inc.
    Inventors: Paul J. DeGroot, Kevin T. Ousdigian, Vasant Padmanabhan, Paul Krause, Vinod Sharma