Patents by Inventor Paul J. Erlinger

Paul J. Erlinger has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9993653
    Abstract: In a subcutaneous implantable cardioverter/defibrillator, cardiac arrhythmias are detected to determine necessary therapeutic action. Cardiac signal information is sensed from far field electrodes implanted in a patient. The sensed cardiac signal information is then amplified and filtered. Parameters such as rate, QRS pulse width, cardiac QRS slew rate, amplitude and stability measures of these parameters from the filtered cardiac signal information are measured, processed and integrated to determine if the cardioverter/defibrillator needs to initiate therapeutic action.
    Type: Grant
    Filed: November 14, 2016
    Date of Patent: June 12, 2018
    Assignee: CAMERON HEALTH, INC.
    Inventors: Gust H. Bardy, William J. Rissmann, Alan H. Ostroff, Paul J. Erlinger, Venugopal Allavatam
  • Publication number: 20170056681
    Abstract: In a subcutaneous implantable cardioverter/defibrillator, cardiac arrhythmias are detected to determine necessary therapeutic action. Cardiac signal information is sensed from far field electrodes implanted in a patient. The sensed cardiac signal information is then amplified and filtered. Parameters such as rate, QRS pulse width, cardiac QRS slew rate, amplitude and stability measures of these parameters from the filtered cardiac signal information are measured, processed and integrated to determine if the cardioverter/defibrillator needs to initiate therapeutic action.
    Type: Application
    Filed: November 14, 2016
    Publication date: March 2, 2017
    Applicant: CAMERON HEALTH, INC.
    Inventors: Gust H. Bardy, William J. Rissmann, Alan H. Ostroff, Paul J. Erlinger, Venugopal Allavatam
  • Patent number: 9522283
    Abstract: In a subcutaneous implantable cardioverter/defibrillator, cardiac arrhythmias are detected to determine necessary therapeutic action. Cardiac signal information is sensed from far field electrodes implanted in a patient. The sensed cardiac signal information is then amplified and filtered. Parameters such as rate, QRS pulse width, cardiac QRS slew rate, amplitude and stability measures of these parameters from the filtered cardiac signal information are measured, processed and integrated to determine if the cardioverter/defibrillator needs to initiate therapeutic action.
    Type: Grant
    Filed: August 27, 2015
    Date of Patent: December 20, 2016
    Assignee: CAMERON HEALTH INC.
    Inventors: Gust H. Bardy, William J. Rissmann, Alan H. Ostroff, Paul J. Erlinger, Venugopal Allavatam
  • Publication number: 20160135741
    Abstract: Compact and lightweight, non-invasive apparatuses to determine tissue wetness/hydration based on the frequency responses of regions of the tissue below a sensor of the apparatus. Described herein are compact and lightweight apparatuses having a sensor with an array of electrodes that is directly connected or connectable to control circuitry to attach to the back of the sensor, which can be worn by a patient. The control circuitry may include a multiplexer (MUX) coordinating the reciprocal selection of drive and sensing electrodes, and a one or more constant current sources. Methods of using these devices to detect tissue wetness are also described.
    Type: Application
    Filed: July 1, 2014
    Publication date: May 19, 2016
    Inventors: Scott Matthew CHETHAM, Paul J. ERLINGER, Alfonso L. DE LIMON, Eniko SRIVASTAVA
  • Publication number: 20160051190
    Abstract: Non-invasive devices and systems to determine tissue wetness/hydration based on relative changes in subsurface resistivities in tissue below an electrode array applied to a human body across different frequencies. For example, these a sensor including arrays of current-injecting and voltage-sensing electrodes may be placed on a subject's back to determine lung wetness. Systems and methods for determining tissue water content, systems and methods for determining lung wetness, sensors for determining relative changes in subsurface resistivities across frequencies and systems and methods to determine which arrays of electrodes in a sensor to use to determine relative changes in subsurface resistivities across frequencies are all described.
    Type: Application
    Filed: August 31, 2015
    Publication date: February 25, 2016
    Inventors: Alfonso L. de Limon, Scott Matthew CHETHAM, Paul J. ERLINGER
  • Publication number: 20150360040
    Abstract: In a subcutaneous implantable cardioverter/defibrillator, cardiac arrhythmias are detected to determine necessary therapeutic action. Cardiac signal information is sensed from far field electrodes implanted in a patient. The sensed cardiac signal information is then amplified and filtered. Parameters such as rate, QRS pulse width, cardiac QRS slew rate, amplitude and stability measures of these parameters from the filtered cardiac signal information are measured, processed and integrated to determine if the cardioverter/defibrillator needs to initiate therapeutic action.
    Type: Application
    Filed: August 27, 2015
    Publication date: December 17, 2015
    Applicant: CAMERON HEALTH, INC.
    Inventors: Gust H. Bardy, William J. Rissmann, Alan H. Ostroff, Paul J. Erlinger, Venugopal Allavatam
  • Patent number: 9149225
    Abstract: Non-invasive devices and systems to determine tissue wetness/hydration based on relative changes in subsurface resistivities in tissue below an electrode array applied to a human body across different frequencies. For example, these a sensor including arrays of current-injecting and voltage-sensing electrodes may be placed on a subject's back to determine lung wetness. Systems and methods for determining tissue water content, systems and methods for determining lung wetness, sensors for determining relative changes in subsurface resistivities across frequencies and systems and methods to determine which arrays of electrodes in a sensor to use to determine relative changes in subsurface resistivities across frequencies are all described.
    Type: Grant
    Filed: December 14, 2012
    Date of Patent: October 6, 2015
    Assignee: Intesection Medical, Inc.
    Inventors: Alfonso L. De Limon, Scott M. Chetham, Paul J. Erlinger
  • Patent number: 9138589
    Abstract: In a subcutaneous implantable cardioverter/defibrillator, cardiac arrhythmias are detected to determine necessary therapeutic action. Cardiac signal information is sensed from far field electrodes implanted in a patient. The sensed cardiac signal information is then amplified and filtered. Parameters such as rate, QRS pulse width, cardiac QRS slew rate, amplitude and stability measures of these parameters from the filtered cardiac signal information are measured, processed and integrated to determine if the cardioverter/defibrillator needs to initiate therapeutic action.
    Type: Grant
    Filed: April 4, 2014
    Date of Patent: September 22, 2015
    Assignee: CAMERON HEALTH, INC.
    Inventors: Gust H. Bardy, William J. Rissmann, Alan H. Ostroff, Paul J. Erlinger, Venugopal Allavatam
  • Publication number: 20140222097
    Abstract: In a subcutaneous implantable cardioverter/defibrillator, cardiac arrhythmias are detected to determine necessary therapeutic action. Cardiac signal information is sensed from far field electrodes implanted in a patient. The sensed cardiac signal information is then amplified and filtered. Parameters such as rate, QRS pulse width, cardiac QRS slew rate, amplitude and stability measures of these parameters from the filtered cardiac signal information are measured, processed and integrated to determine if the cardioverter/defibrillator needs to initiate therapeutic action.
    Type: Application
    Filed: April 4, 2014
    Publication date: August 7, 2014
    Applicant: CAMERON HEALTH, INC.
    Inventors: Gust H. Bardy, William J. Rissmann, Alan H. Ostroff, Paul J. Erlinger, Venugopal Allavatam
  • Patent number: 8750989
    Abstract: In a subcutaneous implantable cardioverter/defibrillator, cardiac arrhythmias are detected to determine necessary therapeutic action. Cardiac signal information is sensed from far field electrodes implanted in a patient. The sensed cardiac signal information is then amplified and filtered. Parameters such as rate, QRS pulse width, cardiac QRS slew rate, amplitude and stability measures of these parameters from the filtered cardiac signal information are measured, processed and integrated to determine if the cardioverter/defibrillator needs to initiate therapeutic action.
    Type: Grant
    Filed: May 20, 2013
    Date of Patent: June 10, 2014
    Assignee: Cameron Health, Inc.
    Inventors: Gust H. Bardy, William J. Rissmann, Alan H. Ostroff, Paul J. Erlinger, Venugopal Allavatam
  • Publication number: 20140148721
    Abstract: Sensors for non-invasively determining tissue wetness/hydration based on relative changes in subsurface resistivities in tissue below the sensor when applied to a human body across different frequencies. A sensor including arrays of current-injecting and voltage-sensing electrodes may be placed on a subject's back to determine lung wetness. Sensors may be used as part of a systems and method for determining tissue water content, systems and methods for determining lung wetness, or the like. Sensors for determining relative changes in subsurface resistivities across frequencies and systems include arrays of electrodes used to determine relative changes in subsurface resistivities across frequencies may include pairs of current-injecting and voltage sensing electrodes.
    Type: Application
    Filed: February 3, 2014
    Publication date: May 29, 2014
    Inventors: Paul J. ERLINGER, Scott M. CHETHAM, Alfonso L. DE LIMON, Eniko SRIVASTAVA
  • Patent number: 8700121
    Abstract: Sensors for non-invasively determining tissue wetness/hydration based on relative changes in subsurface resistivities in tissue below the sensor when applied to a human body across different frequencies. A sensor including arrays of current-injecting and voltage-sensing electrodes may be placed on a subject's back to determine lung wetness. Sensors may be used as part of a systems and method for determining tissue water content, systems and methods for determining lung wetness, or the like. Sensors for determining relative changes in subsurface resistivities across frequencies and systems include arrays of electrodes used to determine relative changes in subsurface resistivities across frequencies may include pairs of current-injecting and voltage sensing electrodes.
    Type: Grant
    Filed: December 14, 2012
    Date of Patent: April 15, 2014
    Assignee: Intersection Medical, Inc.
    Inventors: Paul J. Erlinger, Scott M. Chetham, Alfonso L. De Limon, Eniko Srivastava
  • Patent number: 8644926
    Abstract: A subcutaneous cardiac device includes a subcutaneous electrode and a housing coupled to the subcutaneous electrode by a lead with a lead wire. The subcutaneous electrode is adapted to be implanted in a frontal region of the patient so as to overlap a portion of the patient's heart. The subcutaneous electrode is configured for therapy delivery in combination with one or both of the housing or a second subcutaneous electrode.
    Type: Grant
    Filed: February 12, 2013
    Date of Patent: February 4, 2014
    Assignee: Cameron Health, Inc.
    Inventors: Alan H. Ostroff, Paul J. Erlinger, Gust H. Bardy
  • Publication number: 20130253356
    Abstract: In a subcutaneous implantable cardioverter/defibrillator, cardiac arrhythmias are detected to determine necessary therapeutic action. Cardiac signal information is sensed from far field electrodes implanted in a patient. The sensed cardiac signal information is then amplified and filtered. Parameters such as rate, QRS pulse width, cardiac QRS slew rate, amplitude and stability measures of these parameters from the filtered cardiac signal information are measured, processed and integrated to determine if the cardioverter/defibrillator needs to initiate therapeutic action.
    Type: Application
    Filed: May 20, 2013
    Publication date: September 26, 2013
    Applicant: Cameron Health, Inc.
    Inventors: Gust H. Bardy, William J. Rissmann, Alan H. Ostroff, Paul J. Erlinger, Venugopal Allavatam
  • Publication number: 20130165760
    Abstract: Sensors for non-invasively determining tissue wetness/hydration based on relative changes in subsurface resistivities in tissue below the sensor when applied to a human body across different frequencies. A sensor including arrays of current-injecting and voltage-sensing electrodes may be placed on a subject's back to determine lung wetness. Sensors may be used as part of a systems and method for determining tissue water content, systems and methods for determining lung wetness, or the like. Sensors for determining relative changes in subsurface resistivities across frequencies and systems include arrays of electrodes used to determine relative changes in subsurface resistivities across frequencies may include pairs of current-injecting and voltage sensing electrodes.
    Type: Application
    Filed: December 14, 2012
    Publication date: June 27, 2013
    Inventors: Paul J. ERLINGER, Scott M. CHETHAM, Alfonso L. DE LIMON
  • Publication number: 20130165761
    Abstract: Non-invasive devices and systems to determine tissue wetness/hydration based on relative changes in subsurface resistivities in tissue below an electrode array applied to a human body across different frequencies. For example, these a sensor including arrays of current-injecting and voltage-sensing electrodes may be placed on a subject's back to determine lung wetness. Systems and methods for determining tissue water content, systems and methods for determining lung wetness, sensors for determining relative changes in subsurface resistivities across frequencies and systems and methods to determine which arrays of electrodes in a sensor to use to determine relative changes in subsurface resistivities across frequencies are all described.
    Type: Application
    Filed: December 14, 2012
    Publication date: June 27, 2013
    Inventors: Alfonso L. DE LIMON, Scott M. CHETHAM, Paul J. ERLINGER
  • Patent number: 8457737
    Abstract: In a subcutaneous implantable cardioverter/defibrillator, cardiac arrhythmias are detected to determine necessary therapeutic action. Cardiac signal information is sensed from far field electrodes implanted in a patient. The sensed cardiac signal information is then amplified and filtered. Parameters such as rate, QRS pulse width, cardiac QRS slew rate, amplitude and stability measures of these parameters from the filtered cardiac signal information are measured, processed and integrated to determine if the cardioverter/defibrillator needs to initiate therapeutic action.
    Type: Grant
    Filed: September 13, 2011
    Date of Patent: June 4, 2013
    Assignee: Cameron Health, Inc.
    Inventors: Gust H. Bardy, William J. Rissmann, Alan H. Ostroff, Paul J. Erlinger, Venugopal Allavatam
  • Publication number: 20110319949
    Abstract: In a subcutaneous implantable cardioverter/defibrillator, cardiac arrhythmias are detected to determine necessary therapeutic action. Cardiac signal information is sensed from far field electrodes implanted in a patient. The sensed cardiac signal information is then amplified and filtered. Parameters such as rate, QRS pulse width, cardiac QRS slew rate, amplitude and stability measures of these parameters from the filtered cardiac signal information are measured, processed and integrated to determine if the cardioverter/defibrillator needs to initiate therapeutic action.
    Type: Application
    Filed: September 13, 2011
    Publication date: December 29, 2011
    Inventors: Gust H. Bardy, William J. Rissmann, Alan H. Ostroff, Paul J. Erlinger, Venugopal Allavatam
  • Patent number: 8027720
    Abstract: In a subcutaneous implantable cardioverter/defibrillator, cardiac arrhythmias are detected to determine necessary therapeutic action. Cardiac signal information is sensed from far field electrodes implanted in a patient. The sensed cardiac signal information is then amplified and filtered. Parameters such as rate, QRS pulse width, cardiac QRS slew rate, amplitude and stability measures of these parameters from the filtered cardiac signal information are measured, processed and integrated to determine if the cardioverter/defibrillator needs to initiate therapeutic action.
    Type: Grant
    Filed: May 16, 2008
    Date of Patent: September 27, 2011
    Assignee: Cameron Health, Inc.
    Inventors: Gust H. Bardy, William J. Rissmann, Alan H. Ostroff, Paul J. Erlinger, Venugopal Allavatam
  • Publication number: 20080221632
    Abstract: In a subcutaneous implantable cardioverter/defibrillator, cardiac arrhythmias are detected to determine necessary therapeutic action. Cardiac signal information is sensed from far field electrodes implanted in a patient. The sensed cardiac signal information is then amplified and filtered. Parameters such as rate, QRS pulse width, cardiac QRS slew rate, amplitude and stability measures of these parameters from the filtered cardiac signal information are measured, processed and integrated to determine if the cardioverter/defibrillator needs to initiate therapeutic action.
    Type: Application
    Filed: May 16, 2008
    Publication date: September 11, 2008
    Inventors: Gust H. Bardy, William J. Rissmann, Alan H. Ostroff, Paul J. Erlinger, Venugopal Allavatam