Patents by Inventor Paul J. McConville

Paul J. McConville has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11376880
    Abstract: An adhesive sign suited to use in retail applications includes a substrate layer. An adhesive layer is disposed on the substrate layer. The adhesive layer defines an exposed region for attachment to an associated structure. The adhesive layer is derived from a photo-curable inkjet composition. An ink layer is disposed on the substrate layer. The ink layer includes an image. The ink layer is derived from a photo-curable inkjet composition. The adhesive layer and ink layer can be formed in the same inkjet printing process and cured in a common photo-curing station. A stack of the adhesive signs can be assembled without interleaving a release liner between each pair of signs.
    Type: Grant
    Filed: December 17, 2020
    Date of Patent: July 5, 2022
    Assignee: Xerox Corporation
    Inventors: Douglas K. Herrmann, Seemit Praharaj, Jason M. LeFevre, Paul J. McConville, Chu-Heng Liu
  • Publication number: 20220203671
    Abstract: According to aspects of the embodiments, there is provided a method of measuring the amount of fountain solution employed in a digital offset lithography printing system. Fountain solution thickness is measured by using phase shifted monochromic light to produce optical path differences through the fountain solution film. The intensity of the reflected light through the fountain solution film is very sensitive due to the phase shifted light so interference fringes are easier to delineate and fountain solution thickness measurement more reliable.
    Type: Application
    Filed: December 30, 2020
    Publication date: June 30, 2022
    Inventors: Paul J. McCONVILLE, Chu-heng LIU, Jason M. LeFEVRE, Seemit PRAHARAJ, Douglas K. HERRMANN
  • Publication number: 20220203749
    Abstract: According to aspects of the embodiments, there is provided a method of measuring the amount of fountain solution employed in a digital offset lithography printing system. Fountain solution thickness is measured using a glass roll at a lower temperature than the fountain solution. The lower temperature causes the fountain solution to undergo a change in state and in a solid state the fountain solution crystalizes and changes roll opacity with the thickness of the film. When radiated with a light source the opacity is continuously measured through the surface of the roller. The thickness of the crystallized fountain solution can then be determined via the opacity level increase by the crystallization and the impact to the opacity on the glass roll.
    Type: Application
    Filed: December 30, 2020
    Publication date: June 30, 2022
    Inventors: Douglas K. HERRMANN, Chu-heng LIU, Seemit PRAHARAJ, Paul J. MCCONVILLE, Jason M. LEFEVRE, Michael J. LEVY
  • Publication number: 20220205778
    Abstract: According to aspects of the embodiments, there is provided a method of measuring the amount of fountain solution employed in a digital offset lithography printing system. Fountain solution thickness is measured using a diffractive optical element (DOE) configured with grating surfaces varying in a periodic fashion to hold an amount of fountain solution. When radiated with a light source the combination of the grating surface and the fountain solution therein reduces the scattering of the surface structure (“contrast”) that gives rise to a diffraction pattern. The diffractive optical element can be placed on the printing blanket of the lithography printing system or on a separate substrate.
    Type: Application
    Filed: December 30, 2020
    Publication date: June 30, 2022
    Inventors: Chu-heng LIU, Paul J. MCCONVILLE, Jason M. LEFEVRE, Douglas K. HERRMANN, Seemit PRAHARAJ
  • Patent number: 11370216
    Abstract: An apparatus and method for measuring the thickness of fountain solution (FS) in a Digital Architecture for Lithographic Ink (DALI) printing system by transferring the FS to an optical roller with the properties of a lens and measuring the resulting effect on the refraction of an image captured through the lens. The optical roller may comprise a clear or glass cylinder forming a Fresnel lens cylinder having an engineered surface of known surface roughness and wherein the roller is placed adjacent the image member blanket. A heat source is used to evaporate the FS from the blanket for transfer to the optical roller where the FS wets the roller surface to different degrees based on the FS thickness relative to Fresnel ridge depth. Changes to the optical refraction through the lens varies with the FS thickness. An image sensor (e.g., a CCD camera or image analysis system) evaluates the image through the optical roller for FS thickness determination.
    Type: Grant
    Filed: January 29, 2021
    Date of Patent: June 28, 2022
    Assignee: Xerox Corporation
    Inventors: Douglas K. Herrmann, Chu-Heng Liu, Seemit Praharaj, Jason M. Lefevre, Paul J. McConville
  • Patent number: 11318760
    Abstract: An inkjet printer includes a dryer configured to attenuate the effects of temperature differentials arising in substrates that are caused by holes in a media transport belt and a platen covering a vacuum plenum. The dryer includes a heater, a media transport belt cooler, and a media transport belt. The media transport belt is configured to move substrates past the heater after ink images have been formed on the substrates and the media transport belt cooler is positioned to remove heat energy from the media transport belt after the media transport belt has passed the heater and the substrates have separated from the media transport belt. The substrate cooler is configured to reduce a temperature of the media transport belt to a temperature that attenuates image defects arising from temperature differentials in the media transport belt when the media transport belt is opposite the heater.
    Type: Grant
    Filed: December 23, 2019
    Date of Patent: May 3, 2022
    Assignee: Xerox Corporation
    Inventors: Linn C. Hoover, Douglas K Herrmann, Paul J. McConville, Jason M. LeFevre, Seemit Praharaj, David A. VanKouwenberg, Michael J. Levy, Chu-heng Liu, Santokh S. Badesha, Christopher Mieney, David S. Derleth
  • Publication number: 20220105673
    Abstract: A method includes generating relative movement between a first part and a three-dimensional (3D) printer. The method also includes introducing drops of a liquid metal onto the first part and a second part using the 3D printer. The liquid metal solidifies to join the first part and the second part together.
    Type: Application
    Filed: October 1, 2020
    Publication date: April 7, 2022
    Applicant: XEROX CORPORATION
    Inventors: Jason M. LeFevre, Douglas K. Herrmann, Paul J. McConville, Chu-Heng Liu, Seemit Praharaj
  • Publication number: 20220105561
    Abstract: A method includes moving a first part along a movement path. The method also includes introducing drops of a liquid metal onto the first part using a three-dimensional (3D) printer. The drops of the liquid metal solidify to form a second part that is joined to the first part. The method also includes mechanically joining the second part to a third part.
    Type: Application
    Filed: October 1, 2020
    Publication date: April 7, 2022
    Applicant: XEROX CORPORATION
    Inventors: Jason M. LeFevre, Douglas K. Herrmann, Paul J. McConville, Chu-Heng Liu, Seemit Praharaj
  • Publication number: 20220105684
    Abstract: A three-dimensional (3D) printer is configured to introduce a liquid metal onto a first part and a second part while the first part and the second part are in contact with one another.
    Type: Application
    Filed: October 1, 2020
    Publication date: April 7, 2022
    Applicant: XEROX CORPORATION
    Inventors: Jason M. LeFevre, Douglas K. Herrmann, Paul J. McConville, Chu-Heng Liu, Seemit Praharaj
  • Patent number: 11243121
    Abstract: An indicator tag and a method for fabricating the same are disclosed. For example, the indicator tag includes a three-dimensional mesh comprising a plurality of pores, wherein the three-dimensional mesh is printed with a water soluble and ultra-violet (UV) light curable ink, a container enclosing the three-dimensional mesh, a membrane coupled to the three-dimensional mesh, and a dye dispensed on top of the membrane, wherein the three-dimensional mesh interacts with the dye when in contact with the dye to provide an indication.
    Type: Grant
    Filed: December 20, 2018
    Date of Patent: February 8, 2022
    Assignee: Xerox Corporation
    Inventors: Seemit Praharaj, Michael J. Levy, Paul J. McConville
  • Publication number: 20210387459
    Abstract: A purge cycle is performed with an ink delivery system of an inkjet printer by applying a pressure pulse to a printhead in the printer that is substantially shorter than pressure pulses previously used. A pressure at a predetermined threshold is generated behind a valve and then release to the printhead. The duration of the pressure application is in a range of about 150 milliseconds to about 250 milliseconds. This pressure pulse substantially reduces the amount of ink emitted during the purge. A bidirectional wipe of the printhead face is effective for restoring inkjets in the printhead even though the amount of emitted ink is substantially reduced.
    Type: Application
    Filed: June 10, 2020
    Publication date: December 16, 2021
    Inventors: Seemit Praharaj, Paul J. McConville, Jason M. LeFevre, Michael J. Levy, Thomas J. Wyble
  • Patent number: 11161355
    Abstract: An inkjet printer includes a dryer configured to attenuate the effects of temperature differentials arising in substrates that are caused by holes in a media transport belt and a platen covering a vacuum plenum. The dryer includes a platen, a heater configured to direct heat toward the platen, at least one media transport belt configured to slide over the platen to move the substrates past the heater after the ink images have been formed on the substrates, and at least one belt diversion component configured to divert the at least one media belt from a straight-line path over the platen.
    Type: Grant
    Filed: July 8, 2020
    Date of Patent: November 2, 2021
    Assignee: Xerox Corporation
    Inventors: Paul J. McConville, Linn C. Hoover, Anthony S. Condello, Jason M. LeFevre, Seemit Praharaj, Douglas K. Herrmann, David A. VanKouwenberg, Chu-Heng Liu, Michael J. Levy
  • Patent number: 11143958
    Abstract: A process including providing a substantially flat printed image on a substrate; disposing a curable gellant composition onto the printed image in registration with the printed image, successively depositing additional amounts of the gellant composition to create a raised image in registration with the printed image; and curing the deposited raised image. A process including providing a printed image on a substrate; disposing a curable non-gellant composition onto the printed image in registration with the printed image; and disposing a curable gellant composition onto the printed image in registration with the printed image; to create a raised image in registration with the printed image; and curing the deposited raised image. An ultraviolet curable phase change gellant composition including a radiation curable monomer or prepolymer, a photoinitiator, a silicone polymer or pre-polymer, and a gellant.
    Type: Grant
    Filed: April 4, 2018
    Date of Patent: October 12, 2021
    Assignee: Xerox Corporation
    Inventors: Jennifer L. Belelie, Michelle N. Chrétien, Paul J. McConville, Jason O'Neil, Barkev Keoshkerian, Anthony S. Condello
  • Patent number: 11143597
    Abstract: An electronic device and a method for predicting water ingress employ a water damage indicator including a water-dispersible coating layer which includes a water-dispersible, radiation-cured polymer. Electronic components of the device, which may be susceptible to water damage, are disposed within a casing. The water damage indicator may contact the casing of the electronic device and/or the electronic components. When water enters the casing, the water dispersible coating layer is at least partially removed, revealing the surface beneath, thereby providing an indication of potential water damage to the electronic components. The water damage indicator is not readily replaceable after manufacture, making it more difficult for a customer to disguise potential water damage to the device.
    Type: Grant
    Filed: January 25, 2018
    Date of Patent: October 12, 2021
    Assignee: XEROX CORPORATION
    Inventors: Seemit Praharaj, Jason M. LeFevre, Paul J. McConville, Douglas K. Herrmann, Chu-heng Liu
  • Patent number: 11130282
    Abstract: Layers of build and support material on an intermediate transfer surface are exposed to a solvent using a solvent application station to make the build material tacky, without affecting the support material. Then, the intermediate transfer surface moves past a transfuse station (the transfuse station is positioned to receive the layers after exposure to the solvent) and a platen moves relative to the intermediate transfer surface to contact the platen to one of the layers on the intermediate transfer surface. The intermediate transfer surface transfers a layer of the build material and the support material to the platen each time the platen contacts the layers on the intermediate transfer surface at the transfuse station to successively form a freestanding stack of the layers of build and support material on the platen.
    Type: Grant
    Filed: May 31, 2019
    Date of Patent: September 28, 2021
    Assignee: Xerox Corporation
    Inventors: James A. Winters, Erwin Ruiz, Paul J. McConville, Jason M. LeFevre, Chu-heng Liu
  • Patent number: 11110709
    Abstract: A system for cleaning and treating a printhead includes (a) a movable carriage having affixed to a base of the movable carriage a cleaning blade and an absorptive pad, (b) a low vapor pressure organic solvent, the low vapor pressure organic solvent is deliverable to the absorptive pad via a pump, the low vapor pressure organic solvent has a vapor pressure lower than water and (c) a carriage moving mechanism that moves the carriage so that the cleaning blade and the absorptive pad pass over the printhead.
    Type: Grant
    Filed: February 3, 2020
    Date of Patent: September 7, 2021
    Assignee: XEROX CORPORATION
    Inventors: Michael J. Levy, Seemit Praharaj, Jason M. LeFevre, Linn C. Hoover, Paul J. McConville, Chu-heng Liu, Douglas K. Herrmann, David A. Vankouwenberg
  • Patent number: 11072188
    Abstract: A printer includes at least a first printhead and a second printhead, each of which is operatively connected to a source of aqueous ink having a color that is different than the color of aqueous ink connected to the other printhead. A first source of infrared (IR) radiation is positioned between the first and second printheads and a second source of IR radiation follows the first and second printheads. The first source of IR radiation is tuned to heat color pigment particles in the aqueous ink connected to the first printhead only and the second source of IR radiation is tuned to heat color pigment particles in the aqueous ink connected to the second printhead only.
    Type: Grant
    Filed: September 5, 2019
    Date of Patent: July 27, 2021
    Assignee: Xerox Corporation
    Inventors: Anthony S. Condello, Paul J. McConville
  • Patent number: 11059289
    Abstract: A directionality detector is configured for use in an inkjet printer to attenuate the effects of ink drying in the nozzles of a printhead during printing operations. The directionality detector includes an optical sensor that generates image data of a test pattern formed on media by the printer, a diffuser that emits humidified air toward the media before the media is printed, and a controller operatively connected to the optical sensor and diffuser. The controller is configured compare the image data of the test pattern to stored image data of the test pattern printed at a previous time and determine whether any difference between the two images is greater than a predetermined threshold. The controller then operates the diffuser to direct humidified air toward the media passing the diffuser using the differences between the stored image data of the test pattern and the image data of the test pattern.
    Type: Grant
    Filed: December 23, 2019
    Date of Patent: July 13, 2021
    Assignee: Xerox Corporation
    Inventors: Seemit Praharaj, Douglas K. Herrmann, Paul J. McConville, Jason M. LeFevre, Chu-heng Liu, David A. VanKouwenberg, Michael J. Levy, Linn C. Hoover, Thomas J. Wyble, John P. Meyers
  • Patent number: 11052678
    Abstract: An inkjet printer includes a dryer configured to attenuate cockle in the substrates under the heater of the dryer and reduce ink transfer from ink images during duplex printing without adversely affecting the cooling of the substrates exiting the dryer. The dryer has at least two plenums with at least one plenum opposite a heater and at least one plenum opposite an air vent. A platen covers the plenum opposite the air vent and the platen has a plurality of protuberances arranged in a non-linear arrangement so the protuberances contact substrates being carried by a plurality of endless belts over the plenum to prevent the substrates from contacting a surface of the platen. Another platen covers the plenum opposite the heater and this platen has non-linear members on its surface to support the substrates and reduce cockle while the ink is dried by the heater.
    Type: Grant
    Filed: February 6, 2020
    Date of Patent: July 6, 2021
    Assignee: Xerox Corporation
    Inventors: John Baker, Paul J. McConville, Linn C. Hoover, David S. Derleth, Michael J. Linder
  • Publication number: 20210187968
    Abstract: An inkjet printer includes a dryer configured to attenuate the effects of temperature differentials arising in substrates that are caused by holes in a media transport belt and a platen covering a vacuum plenum. The dryer includes a heater, a media transport belt cooler, and a media transport belt. The media transport belt is configured to move substrates past the heater after ink images have been formed on the substrates and the media transport belt cooler is positioned to remove heat energy from the media transport belt after the media transport belt has passed the heater and the substrates have separated from the media transport belt. The substrate cooler is configured to reduce a temperature of the media transport belt to a temperature that attenuates image defects arising from temperature differentials in the media transport belt when the media transport belt is opposite the heater.
    Type: Application
    Filed: December 23, 2019
    Publication date: June 24, 2021
    Inventors: Linn C. Hoover, Douglas K. Herrmann, Paul J. McConville, Jason M. LeFevre, Seemit Praharaj, David A. VanKouwenberg, Michael J. Levy, Chu-heng Liu, Santokh S. Badesha, Christopher Mieney, David S. Derleth