Patents by Inventor Paul J. Schuele

Paul J. Schuele has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240145443
    Abstract: A microLED mass transfer stamping system includes a stamp substrate with an array of trap sites, each configured with a columnar-shaped recess to temporarily secure a keel extended from a bottom surface of a microLED. In the case of surface mount microLEDs, the keel is electrically nonconductive. In the case of vertical microLEDs, the keel is an electrically conductive second electrode. The stamping system also includes a fluidic assembly carrier substrate with an array of wells having a pitch separating adjacent wells that matches the pitch separating the stamp substrate trap sites. A display substrate includes an array of microLED pads with the same pitch as the trap sites. The stamp substrate top surface is pressed against the display substrate, with each trap site interfacing a corresponding microLED site, and the microLEDs are transferred. Fluidic assembly stamp substrates are also presented for use with microLEDs having keels or axial leads.
    Type: Application
    Filed: January 8, 2024
    Publication date: May 2, 2024
    Inventors: Paul J Schuele, Kenji Sasaki, Kurt Ulmer, Jong-Jan Lee
  • Patent number: 11929356
    Abstract: A method is provided for the selective harvest of microLED devices from a carrier substrate. Defect regions are predetermined that include a plurality of adjacent defective microLED devices on a carrier substrate. A solvent-resistant binding material is formed overlying the predetermined defect regions and exposed adhesive is dissolved with an adhesive dissolving solvent. Non-defective microLED devices located outside the predetermined defect regions are separated from the carrier substrate while adhesive attachment is maintained between the microLED devices inside the predetermined defect regions and the carrier substrate. Methods are also provided for the dispersal of microLED devices on an emissive display panel by initially optically measuring a suspension of microLEDs to determine suspension homogeneity and calculate the number of microLEDs per unit volume.
    Type: Grant
    Filed: February 3, 2022
    Date of Patent: March 12, 2024
    Assignee: eLux, Inc.
    Inventors: Kenji Sasaki, Kurt Ulmer, Paul J. Schuele, Jong-Jan Lee
  • Patent number: 11916163
    Abstract: A system and method are provided for repairing an emissive element display. If a defective emissive element is detected in a subpixel, a subpixel repair interface isolates the defective emissive element. The repair interface may be a parallel repair interface with n number of selectively fusible electrically conductive repair nodes, connected in parallel to a control line of the matrix. Alternatively, the repair interface may be a series repair interface with m number of repair nodes, selectively connectable to bypass adjacent (defective) series-connected emissive elements. If the subpixel emissive elements are connected in parallel, and a defective low impedance emissive element is detected, a parallel repair interface fuses open a connection between the defective emissive element and a matrix control line. If the subpixels include series-connected emissive elements, and a high impedance emissive element is detected, a series repair interface forms a connection bypassing the defective emissive element.
    Type: Grant
    Filed: September 2, 2021
    Date of Patent: February 27, 2024
    Assignee: eLux, Inc.
    Inventors: Jong-Jan Lee, Paul J. Schuele
  • Patent number: 11908841
    Abstract: Disclosed herein is a micro light emitting diode (microLED) display structure with emission from the back side of a transparent substrate, which can be manufactured by fluidic assembly. The architecture allows microLED displays or display tiles to be fabricated simply, with processing and interconnection only on one side of the backplane. The structure may incorporate reflectors in the fluidic assembly structures to direct substantially all of the emitted light toward the viewer. Also disclosed are microLEDs and emission backplanes designed to support a back emission display.
    Type: Grant
    Filed: May 21, 2021
    Date of Patent: February 20, 2024
    Assignee: eLux, Inc.
    Inventors: Paul J. Schuele, Kurt Ulmer, Kenji Sasaki, Jong-Jan Lee
  • Patent number: 11894350
    Abstract: A microLED mass transfer stamping system includes a stamp substrate with an array of trap sites, each configured with a columnar-shaped recess to temporarily secure a keel extended from a bottom surface of a microLED. In the case of surface mount microLEDs, the keel is electrically nonconductive. In the case of vertical microLEDs, the keel is an electrically conductive second electrode. The stamping system also includes a fluidic assembly carrier substrate with an array of wells having a pitch separating adjacent wells that matches the pitch separating the stamp substrate trap sites. A display substrate includes an array of microLED pads with the same pitch as the trap sites. The stamp substrate top surface is pressed against the display substrate, with each trap site interfacing a corresponding microLED site, and the microLEDs are transferred. Fluidic assembly stamp substrates are also presented for use with microLEDs having keels or axial leads.
    Type: Grant
    Filed: November 23, 2020
    Date of Patent: February 6, 2024
    Assignee: e Lux, Inc.
    Inventors: Paul J. Schuele, Kenji Sasaki, Kurt Ulmer, Jong-Jan Lee
  • Patent number: 11880869
    Abstract: An automated package transfer system and method are provided with a concierge interface. A publically accessible locker, associated with a package transfer service, has a compartment configured to limit access to a stored package. The locker can be used to deliver or pick up packages. The locker is moved to a selected temporary stationary location and access to the locker compartment is controlled. A communications subsystem selectively connects a (local) concierge user interface (UI) with a (remote) package transfer service locker attendant UI. The locker may be attached to a portable kiosk or a vehicle and positioned at a selected location using an autonomous driverless software application. The stationary locations may be cross-referenced to weighted values, which may be related to service prices and expenses. In one aspect, the concierge UI is connected to the locker attendant UI in response to the vehicle being parked in a selected stationary location.
    Type: Grant
    Filed: October 9, 2022
    Date of Patent: January 23, 2024
    Assignee: Productive Application Solutions, Inc.
    Inventors: Peter Ta, Gerald Maliszewski, Paul J Schuele
  • Patent number: 11855051
    Abstract: A method is provided for the selective harvest of microLED devices from a carrier substrate. Defect regions are predetermined that include a plurality of adjacent defective microLED devices on a carrier substrate. A solvent-resistant binding material is formed overlying the predetermined defect regions and exposed adhesive is dissolved with an adhesive dissolving solvent. Non-defective microLED devices located outside the predetermined defect regions are separated from the carrier substrate while adhesive attachment is maintained between the microLED devices inside the predetermined defect regions and the carrier substrate. Methods are also provided for the dispersal of microLED devices on an emissive display panel by initially optically measuring a suspension of microLEDs to determine suspension homogeneity and calculate the number of microLEDs per unit volume.
    Type: Grant
    Filed: February 3, 2022
    Date of Patent: December 26, 2023
    Assignee: eLux, Inc.
    Inventors: Kenji Sasaki, Kurt Ulmer, Paul J. Schuele, Jong-Jan Lee
  • Publication number: 20230261153
    Abstract: A method is provided for fabricating an encapsulated emissive element. Beginning with a growth substrate, a plurality of emissive elements is formed. The growth substrate top surface is conformally coated with an encapsulation material. The encapsulation material may be photoresist, a polymer, a light reflective material, or a light absorbing material. The encapsulant is patterned to form fluidic assembly keys having a profile differing from the emissive element profiles. In one aspect, prior to separating the emissive elements from the handling substrate, a fluidic assembly keel or post is formed on each emissive element bottom surface. In one variation, the emissive elements have a horizontal profile. The fluidic assembly key has horizontal profile differing from the emissive element horizontal profile useful in selectively depositing different types of emissive elements during fluidic assembly.
    Type: Application
    Filed: August 4, 2020
    Publication date: August 17, 2023
    Inventors: Kenji Sasaki, Paul J. Schuele
  • Publication number: 20230253377
    Abstract: A microLED mass transfer stamping system includes a stamp substrate with an array of trap sites, each configured with a columnar-shaped recess to temporarily secure a keel extended from a bottom surface of a microLED. In the case of surface mount microLEDs, the keel is electrically nonconductive. In the case of vertical microLEDs, the keel is an electrically conductive second electrode. The stamping system also includes a fluidic assembly carrier substrate with an array of wells having a pitch separating adjacent wells that matches the pitch separating the stamp substrate trap sites. A display substrate includes an array of microLED pads with the same pitch as the trap sites. The stamp substrate top surface is pressed against the display substrate, with each trap site interfacing a corresponding microLED site, and the microLEDs are transferred. Fluidic assembly stamp substrates are also presented for use with microLEDs having keels or axial leads.
    Type: Application
    Filed: April 20, 2023
    Publication date: August 10, 2023
    Inventors: Paul J Schuele, Kenji Sasaki, Kurt Ulmer, Jong-Jan Lee
  • Patent number: 11721792
    Abstract: Light emitting devices and methods for their manufacture are provided. According to one aspect, a light emitting device is provided that comprises a substrate having a recess, and an interlayer dielectric layer located on the substrate. The interlayer dielectric layer may have a first hole and a second hole, the first hole opening over the recess of the substrate. The light emitting device may further include first and second micro LEDs, the first micro LED having a thickness greater than the second micro LED. The first micro LED and the second micro LED may be placed in the first hole and the second hole, respectively.
    Type: Grant
    Filed: January 25, 2021
    Date of Patent: August 8, 2023
    Assignee: eLux Inc.
    Inventors: Kenji Alexander Sasaki, Paul J. Schuele, Mark Albert Crowder
  • Publication number: 20230057601
    Abstract: A method is provided for fabricating an encapsulated emissive element. Beginning with a growth substrate, a plurality of emissive elements is formed. The growth substrate top surface is conformally coated with an encapsulation material. The encapsulation material may be photoresist, a polymer, a light reflective material, or a light absorbing material. The encapsulant is patterned to form fluidic assembly keys having a profile differing from the emissive element profiles. In one aspect, prior to separating the emissive elements from the handling substrate, a fluidic assembly keel or post is formed on each emissive element bottom surface. In one variation, the emissive elements have a horizontal profile. The fluidic assembly key has horizontal profile differing from the emissive element horizontal profile useful in selectively depositing different types of emissive elements during fluidic assembly.
    Type: Application
    Filed: November 6, 2022
    Publication date: February 23, 2023
    Inventors: Kenji Sasaki, Paul J. Schuele
  • Publication number: 20220157790
    Abstract: A method is provided for the selective harvest of microLED devices from a carrier substrate. Defect regions are predetermined that include a plurality of adjacent defective microLED devices on a carrier substrate. A solvent-resistant binding material is formed overlying the predetermined defect regions and exposed adhesive is dissolved with an adhesive dissolving solvent. Non-defective microLED devices located outside the predetermined defect regions are separated from the carrier substrate while adhesive attachment is maintained between the microLED devices inside the predetermined defect regions and the carrier substrate. Methods are also provided for the dispersal of microLED devices on an emissive display panel by initially optically measuring a suspension of microLEDs to determine suspension homogeneity and calculate the number of microLEDs per unit volume.
    Type: Application
    Filed: February 3, 2022
    Publication date: May 19, 2022
    Inventors: Kenji Sasaki, Kurt Ulmer, Paul J. Schuele, Jong-Jan Lee
  • Publication number: 20220157791
    Abstract: A method is provided for the selective harvest of microLED devices from a carrier substrate. Defect regions are predetermined that include a plurality of adjacent defective microLED devices on a carrier substrate. A solvent-resistant binding material is formed overlying the predetermined defect regions and exposed adhesive is dissolved with an adhesive dissolving solvent. Non-defective microLED devices located outside the predetermined defect regions are separated from the carrier substrate while adhesive attachment is maintained between the microLED devices inside the predetermined defect regions and the carrier substrate. Methods are also provided for the dispersal of microLED devices on an emissive display panel by initially optically measuring a suspension of microLEDs to determine suspension homogeneity and calculate the number of microLEDs per unit volume.
    Type: Application
    Filed: February 3, 2022
    Publication date: May 19, 2022
    Inventors: Kenji Sasaki, Kurt Ulmer, Paul J. Schuele, Jong-Jan Lee
  • Publication number: 20220149254
    Abstract: Disclosed herein is a micro light emitting diode (microLED) display structure with emission from the back side of a transparent substrate, which can be manufactured by fluidic assembly. The architecture allows microLED displays or display tiles to be fabricated simply, with processing and interconnection only on one side of the backplane. The structure may incorporate reflectors in the fluidic assembly structures to direct substantially all of the emitted light toward the viewer. Also disclosed are microLEDs and emission backplanes designed to support a back emission display.
    Type: Application
    Filed: May 21, 2021
    Publication date: May 12, 2022
    Inventors: Paul J. Schuele, Kurt Ulmer, Kenji Sasaki, Jong-Jan Lee
  • Patent number: 11315910
    Abstract: A method is provided for the selective harvest of microLED devices from a carrier substrate. Defect regions are predetermined that include a plurality of adjacent defective microLED devices on a carrier substrate. A solvent-resistant binding material is formed overlying the predetermined defect regions and exposed adhesive is dissolved with an adhesive dissolving solvent. Non-defective microLED devices located outside the predetermined defect regions are separated from the carrier substrate while adhesive attachment is maintained between the microLED devices inside the predetermined defect regions and the carrier substrate. Methods are also provided for the dispersal of microLED devices on an emissive display panel by initially optically measuring a suspension of microLEDs to determine suspension homogeneity and calculate the number of microLEDs per unit volume.
    Type: Grant
    Filed: May 16, 2020
    Date of Patent: April 26, 2022
    Assignee: eLux, Inc.
    Inventors: Kenji Sasaki, Kurt Ulmer, Paul J. Schuele, Jong-Jan Lee
  • Patent number: 11296059
    Abstract: A method is provided for the selective harvest of microLED devices from a carrier substrate. Defect regions are predetermined that include a plurality of adjacent defective microLED devices on a carrier substrate. A solvent-resistant binding material is formed overlying the predetermined defect regions and exposed adhesive is dissolved with an adhesive dissolving solvent. Non-defective microLED devices located outside the predetermined defect regions are separated from the carrier substrate while adhesive attachment is maintained between the microLED devices inside the predetermined defect regions and the carrier substrate. Methods are also provided for the dispersal of microLED devices on an emissive display panel by initially optically measuring a suspension of microLEDs to determine suspension homogeneity and calculate the number of microLEDs per unit volume.
    Type: Grant
    Filed: May 16, 2020
    Date of Patent: April 5, 2022
    Assignee: eLux Inc.
    Inventors: Kenji Sasaki, Kurt Ulmer, Paul J. Schuele, Jong-Jan Lee
  • Patent number: 11278900
    Abstract: Microperturbation fluidic assembly systems and methods are provided for the fabrication of emissive panels. The method provides an emissive substrate with a top surface patterned to form an array of wells. A liquid suspension is formed over the emissive substrate top surface, comprising a first liquid and emissive elements. Using an array of micropores, a perturbation medium, which optionally includes emissive elements, is injected into the liquid suspension. The perturbation medium may be the first liquid, a second liquid, or a gas. A laminar flow is created in the liquid suspension along the top surface of the emissive substrate in response to the perturbation medium, and emissive elements are captured in the wells. The ejection of the perturbation medium can also be used to control the thickness of the liquid suspension overlying the top surface of the emissive substrate.
    Type: Grant
    Filed: January 8, 2020
    Date of Patent: March 22, 2022
    Assignee: eLux, Inc.
    Inventors: Kenji Sasaki, Shu-han Yu, Paul J. Schuele
  • Patent number: 11251166
    Abstract: A fluidic assembly emissive display panel is presented with a plurality of wells exposing LED interfaces. Each LED interface is made up of a planar first interconnect platform having an x-axis first depth and is configured to accept an axial LED first electrode mounting wing. A planar second interconnect platform has the first depth and is configured to accept an axial LED second electrode mounting wing. A groove is interposed between the first and second interconnect platforms and has an x-axis second depth, greater than the first depth, and is configured to accept an axial LED body locking tooth. The axial LEDs have an inorganic LED body with two symmetrical locking teeth. First and second electrode mounting wings are electrically connected to corresponding LED interface first and second interconnect platforms, and aligned in a plane orthogonal to stacked LED body semiconductor layers.
    Type: Grant
    Filed: April 13, 2020
    Date of Patent: February 15, 2022
    Assignee: eLux, Inc.
    Inventors: Paul J. Schuele, Kenji Sasaki, Kurt Ulmer, Jong-Jan Lee
  • Publication number: 20210399165
    Abstract: A system and method are provided for repairing an emissive element display. If a defective emissive element is detected in a subpixel, a subpixel repair interface isolates the defective emissive element. The repair interface may be a parallel repair interface with n number of selectively fusible electrically conductive repair nodes, connected in parallel to a control line of the matrix. Alternatively, the repair interface may be a series repair interface with m number of repair nodes, selectively connectable to bypass adjacent (defective) series-connected emissive elements. If the subpixel emissive elements are connected in parallel, and a defective low impedance emissive element is detected, a parallel repair interface fuses open a connection between the defective emissive element and a matrix control line. If the subpixels include series-connected emissive elements, and a high impedance emissive element is detected, a series repair interface forms a connection bypassing the defective emissive element.
    Type: Application
    Filed: September 2, 2021
    Publication date: December 23, 2021
    Inventors: Jong-Jan Lee, Paul J. Schuele
  • Patent number: 11145787
    Abstract: A system and method are provided for repairing an emissive element display. If a defective emissive element is detected in a subpixel, a subpixel repair interface isolates the defective emissive element. The repair interface may be a parallel repair interface with n number of selectively fusible electrically conductive repair nodes, connected in parallel to a control line of the matrix. Alternatively, the repair interface may be a series repair interface with m number of repair nodes, selectively connectable to bypass adjacent (defective) series-connected emissive elements. If the subpixel emissive elements are connected in parallel, and a defective low impedance emissive element is detected, a parallel repair interface fuses open a connection between the defective emissive element and a matrix control line. If the subpixels include series-connected emissive elements, and a high impedance emissive element is detected, a series repair interface forms a connection bypassing the defective emissive element.
    Type: Grant
    Filed: December 26, 2019
    Date of Patent: October 12, 2021
    Assignee: eLux, Inc.
    Inventors: Jong-Jan Lee, Paul J. Schuele