Patents by Inventor Paul J. Thompson

Paul J. Thompson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20040073293
    Abstract: A prosthesis for transluminal implantation consists of a flexible tubular three-dimensionally braided structure of metal or polymeric monofilaments, and polymeric multifilament yarns. The prosthesis can be elastically deformed to reduce its diameter through axial elongation. The monofilaments and multifilament yarns are arranged in axially spaced apart helices, concentric on a common central axis of the prosthesis. The monofilaments are selectively shaped before their interbraiding with the multifilament yarns, either by an age-hardening or other heat-setting stage, or a cold-working stage that controllably plastically deforms the strands. The shaped structural strands cooperate to impart to the prosthesis its nominal shape and resilience. The textile strands cooperate to provide one or more layers of sheeting that reduce permeability and thereby enhance the utility of the prosthesis as a vascular graft.
    Type: Application
    Filed: July 15, 2003
    Publication date: April 15, 2004
    Inventor: Paul J. Thompson
  • Publication number: 20040044396
    Abstract: An implantable stent and stent-graft for treating a patient having a relatively healthy first aorta portion upstream from a renal artery branch, and a diseased aorta portion downstream from the renal artery branch. One embodiment of the device includes a fixation section, a renal artery branch section and a diseased aorta section, all of which can be tubular, radially compressible and self-expandable structures formed from a plurality of filaments which are helically wound in a braided configuration. When the device is implanted and in its expanded state, the fixation section engages the first aorta portion upstream from a renal artery branch to provide substantial anchoring support. The diseased aorta section engages the portion of the aorta downstream from the renal artery branch and extends across the diseased portion of the aorta for purposes of treatment.
    Type: Application
    Filed: February 4, 2003
    Publication date: March 4, 2004
    Inventors: Claude O. Clerc, Paul F. Chouinard, Paul J. Thompson
  • Patent number: 6689162
    Abstract: A prothesis for transluminal implantation consists of a flexible tubular interbraided structure of metal or polymeric monofilaments, and polymeric multifilament yarns. The prosthesis can be elastically deformed to reduce its diameter through axial elongation. The monofilaments and multifilament yarns are arranged in axially spaced apart helices, concentric on a common central axis of the prosthesis. The monofilaments are selectively shaped before their interbraiding with the multifilament yarns, either by an age-hardening or other heat-setting stage, or a cold-working stage that controllably plastically deforms the strands. The shaped structural strands cooperate to impart to the prosthesis its nominal shape and resilience. The textile strands cooperate to provide a sheeting that occupies interstices between adjacent structural strands, to reduce permeability and thereby enhance the utility of the prosthesis as a vascular graft.
    Type: Grant
    Filed: February 1, 2000
    Date of Patent: February 10, 2004
    Assignee: Boston Scientific SciMed, Inc.
    Inventor: Paul J. Thompson
  • Publication number: 20030229391
    Abstract: The present disclosure relates to a stent including a stent body having a stent axis. The stent body includes structural members defining openings through the stent body. The structural members are provided with regions having different widths. The relative sizes of the widths are selected to control the length of the stent body as the stent body is radially expanded from an un-deployed orientation to a deployed orientation. In one embodiment, the regions having different widths are provided by tapering the widths of selected segments of the structural member.
    Type: Application
    Filed: August 14, 2003
    Publication date: December 11, 2003
    Inventor: Paul J. Thompson
  • Patent number: 6623491
    Abstract: A stent delivery system includes outer and inner elongated, flexible tubular members each having a distal and proximal ends. The outer tubular member is sized to be passed through the body lumen with the distal end advanced to the deployment site and with the proximal end remaining external of the patient's body for manipulation by an operator. The inner tubular member is sized to be received within the outer tubular member. The outer tubular and inner tubular members are axially slideable relative to one another between a transport position and the deploy position. The inner tubular member has a stent attachment location at its distal end. The stent attachment location is covered by the outer tubular member when the inner and outer tubular members are in the transport position. The stent attachment location is exposed when the inner and outer tubular members are in the deploy position. A spacer member is disposed between the inner and outer tubular members.
    Type: Grant
    Filed: January 18, 2001
    Date of Patent: September 23, 2003
    Assignee: ev3 Peripheral, Inc.
    Inventor: Paul J. Thompson
  • Patent number: 6623518
    Abstract: An implant delivery system includes outer and inner elongated, flexible tubular members each having a distal and proximal end. The outer tubular member is sized to be passed through the body lumen with the distal end advanced to the deployment site and with the proximal end remaining external of the patient's body for manipulation by an operator. The inner tubular member is sized to be received within the outer tubular member. The outer tubular and inner tubular members are axially slidable relative to one another between a transport position and the deploy position. The inner tubular member has an implant attachment location at its distal end. The implant attachment location is covered by the outer tubular member when the inner and outer tubular members are in the transport position. The implant attachment location is exposed when the inner and outer tubular members are in the deploy position.
    Type: Grant
    Filed: February 26, 2001
    Date of Patent: September 23, 2003
    Assignee: ev3 Peripheral, Inc.
    Inventors: Paul J. Thompson, Nathan T. Lee
  • Patent number: 6592617
    Abstract: A prosthesis for transluminal implantation consists of a flexible tubular three-dimensionally braided structure of metal or polymeric monofilaments, and polymeric multifilament yarns. The prosthesis can be elastically deformed to reduce its diameter through axial elongation. The monofilaments and multifilament yarns are arranged in axially spaced apart helices, concentric on a common central axis of the prosthesis. The monofilaments are selectively shaped before their interbraiding with the multifilament yarns, either by an age-hardening or other heat-setting stage, or a cold-working stage that controllably plastically deforms the strands. The shaped structural strands cooperate to impart to the prosthesis its nominal shape and resilience. The textile strands cooperate to provide one or more layers of sheeting that reduce permeability and thereby enhance the utility of the prosthesis as a vascular graft.
    Type: Grant
    Filed: January 16, 2001
    Date of Patent: July 15, 2003
    Assignee: Boston Scientific Scimed, Inc.
    Inventor: Paul J. Thompson
  • Publication number: 20030120336
    Abstract: A intraluminal stent comprises a reticulated tube having an un-deployed diameter and expandable to an enlarged diameter. The tube includes a structural beam extending between first and second ends. The structural beam changes from a first geometry to a second geometry when the tube changes from the un-deployed diameter to the enlarged diameter. The structural beam includes first and second longitudinal elements each extending at least partially between the first and second ends and with a spacing between the first and second elements. Each of said first and second elements changes from the first geometry to the second geometry when the tube changes from the un-deployed diameter to the enlarged diameter for the spacing to remain substantially unchanged as the tube changes from the un-deployed diameter to the enlarged diameter.
    Type: Application
    Filed: January 28, 2003
    Publication date: June 26, 2003
    Applicant: Intra Therapeutics, Inc.
    Inventor: Paul J. Thompson
  • Patent number: 6558415
    Abstract: The present disclosure relates to a stent including a stent body having a stent axis. The stent body includes structural members defining openings through the stent body. The structural members are provided with regions having different widths. The relative sizes of the widths are selected to control the length of the stent body as the stent body is radially expanded from an un-deployed orientation to a deployed orientation. In one embodiment, the regions having different widths are provided by tapering the widths of selected segments of the structural member.
    Type: Grant
    Filed: January 18, 2001
    Date of Patent: May 6, 2003
    Assignee: IntraTherapeutics, Inc.
    Inventor: Paul J. Thompson
  • Publication number: 20030074043
    Abstract: A stent delivery system includes outer and inner elongated, flexible tubular members each having a distal and proximal ends. The outer tubular member is sized to be passed through the body lumen with the distal end advanced to the deployment site and with the proximal end remaining external of the patient's body for manipulation by an operator. The inner tubular member is sized to be received within the outer tubular member. The outer tubular and inner tubular members are axially slideable relative to one another between a transport position and the deploy position. The inner tubular member has a stent attachment location at its distal end. The stent attachment location is covered by the outer tubular member when the inner and outer tubular members are in the transport position. The stent attachment location is exposed when the inner and outer tubular members are in the deploy position. A spacer member is disposed between the inner and outer tubular members.
    Type: Application
    Filed: January 18, 2001
    Publication date: April 17, 2003
    Inventor: Paul J. Thompson
  • Publication number: 20030055485
    Abstract: A stent defining a longitudinal axis is disclosed. A plurality of circumferential support structures are spaced-apart along the longitudinal axis. At least some of the circumferential support structures are interconnected by connection members that extend generally in a circumferential direction.
    Type: Application
    Filed: September 17, 2001
    Publication date: March 20, 2003
    Applicant: Intra Therapeutics, Inc.
    Inventors: Nathan T. Lee, Paul J. Thompson
  • Patent number: 6533808
    Abstract: A intraluminal stent comprises a reticulated tube having an un-deployed diameter and expandable to an enlarged diameter. The tube includes a structural beam extending between first and second ends. The structural beam changes from a first geometry to a second geometry when the tube changes from the un-deployed diameter to the enlarged diameter. The structural beam includes first and second longitudinal elements each extending at least partially between the first and second ends and with a spacing between the first and second elements. Each of said first and second elements changes from the first geometry to the second geometry when the tube changes from the un-deployed diameter to the enlarged diameter for the spacing to remain substantially unchanged as the tube changes from the un-deployed diameter to the enlarged diameter.
    Type: Grant
    Filed: April 7, 2000
    Date of Patent: March 18, 2003
    Assignee: Intratherapeutics, Inc.
    Inventor: Paul J. Thompson
  • Patent number: 6524334
    Abstract: The expandable stent-graft generally defines a cylindrical lumen made from a stent having a discontinuous wail that is at least substantially covered with an expanded polytetrafluoroethylene material. The expanded polytetrafluoroethylene covering may be a biaxially oriented, expanded polytetrafluoroethylene material having nodules and longitudinal and circumferential fibrils or a uniaxially oriented. expanded polytetrafluoroethylene material. The expandable stent-graft expands and compresses in association with the stent structure as it is contracted and expanded.
    Type: Grant
    Filed: April 21, 2000
    Date of Patent: February 25, 2003
    Assignee: Schneider (USA)
    Inventor: Paul J. Thompson
  • Patent number: 6500203
    Abstract: A stent graft for transluminal implantation includes a resilient tubular interbraided latticework of metal or polymeric monofilaments, a tubular interbraided sleeve of polymeric multifilament yarns, and an adhesive layer between the sleeve and latticework for bonding them together. The monofilaments and multifilament yarns are arranged in respective sets of axially spaced apart and oppositely directed helices, concentric on a common axis of the stent graft. The respective braid angles of the monofilaments and multifilament yarns are carefully matched to ensure that the latticework and sleeve behave according to substantially the same relationship governing the amount of radial reduction that accompanies a given axial elongation. According to a process for fabricating the stent graft, the latticework and sleeve are braided and thermally set independently, then bonded to one another by a silicone polymer adhesive applied evenly to the latticework in a liquid spray that also incorporates an organic solvent.
    Type: Grant
    Filed: May 27, 1999
    Date of Patent: December 31, 2002
    Assignee: Boston Scientific Scimed, Inc.
    Inventors: Paul J. Thompson, George W. Du
  • Publication number: 20020120322
    Abstract: An implant delivery system includes outer and inner elongated, flexible tubular members each having a distal and proximal end. The outer tubular member is sized to be passed through the body lumen with the distal end advanced to the deployment site and with the proximal end remaining external of the patient's body for manipulation by an operator. The inner tubular member is sized to be received within the outer tubular member. The outer tubular and inner tubular members are axially slidable relative to one another between a transport position and the deploy position. The inner tubular member has an implant attachment location at its distal end. The implant attachment location is covered by the outer tubular member when the inner and outer tubular members are in the transport position. The implant attachment location is exposed when the inner and outer tubular members are in the deploy position.
    Type: Application
    Filed: February 26, 2001
    Publication date: August 29, 2002
    Inventors: Paul J. Thompson, Nathan T. Lee
  • Publication number: 20020120323
    Abstract: An implant delivery system is disclosed. The delivery system includes an elongated member having an implant mounting location. A self-expandable implant is mounted at the implant mounting location. The implant is held in a compressed orientation by a retractable sheath. An interlock structure prevents the implant from deploying prematurely as the sheath is retracted.
    Type: Application
    Filed: September 17, 2001
    Publication date: August 29, 2002
    Applicant: IntraTherapeutics, Inc.
    Inventors: Paul J. Thompson, Nathan T. Lee
  • Publication number: 20020095203
    Abstract: A stent delivery system includes outer and inner elongated, flexible tubular members each having a distal and proximal ends. The outer tubular member is sized to be passed through the body lumen with the distal end advanced to the deployment site and with the proximal end remaining external of the patient's body for manipulation by an operator. The inner tubular member is sized to be received within the outer tubular member. The inner tubular member has a stent attachment location at its distal end. A spacer member is disposed between the inner and outer tubular members. The spacer member maintains spacing between the inner and outer tubular members. Opposing surfaces of the inner and outer tubular members define a passageway extending from the proximal end towards the distal end of the outer tubular member. A fluid exchange port is provided in communication with the passageway at the proximal end of the outer tubular member.
    Type: Application
    Filed: September 17, 2001
    Publication date: July 18, 2002
    Applicant: Intra Therapeutics, Inc.
    Inventors: Paul J. Thompson, Richard C. Gunderson
  • Publication number: 20020095204
    Abstract: A stent delivery system includes inner and outer tubular members with the outer tubular member sized to pass through the body lumen to the deployment site and with the inner tubular member sized to be received within the outer tubular member. The inner and outer tubular members are axially slideable relative to one another between a transport position and a deploy position. The inner tubular member has a stent attachment location at its distal end. The stent attachment location is covered by the outer tubular member when the inner and outer tubular members are in the transport position. The stent attachment location is exposed when the inner and outer tubular members are in the deploy position. A first handle is provided rotatably connected to a proximal end of the outer tubular member for the first handle to transmit to the outer tubular member axial forces applied to the handle by an operator and to rotate freely about the axis relative to the outer tubular member.
    Type: Application
    Filed: January 18, 2001
    Publication date: July 18, 2002
    Inventors: Paul J. Thompson, Thomas M. Benson
  • Patent number: 6358274
    Abstract: The present disclosure relates to an intraluminal stent including a reticulated tube having an un-deployed diameter and expandable to an enlarged diameter. When the tube is at the un-deployed diameter, the tube has cell-defining portions with opposing surfaces defining an open cell bounded by the cell-defining portions. The cell has a major axis and a minor axis. The cell-defining portions include first and second longitudinal segments each having a longitudinal axis extending parallel to and positioned on opposite sides of the cell major axis. The longitudinal segments have an undulating pattern to define a plurality of peaks and valleys spaced outwardly and inwardly, respectively, from the longitudinal axes. The first and second longitudinal segments are interconnected at opposite ends.
    Type: Grant
    Filed: April 7, 2000
    Date of Patent: March 19, 2002
    Assignee: Intratherapeutics, Inc.
    Inventor: Paul J. Thompson
  • Patent number: D458679
    Type: Grant
    Filed: January 18, 2001
    Date of Patent: June 11, 2002
    Assignee: IntraTherapeutics, Inc.
    Inventors: Paul J. Thompson, Thomas M. Benson