Patents by Inventor Paul Jacob Logsdon

Paul Jacob Logsdon has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11817697
    Abstract: The method and systems described herein provide for identifying and mitigating undesirable power or voltage fluctuations in regions of a semiconductor device. For example, embodiments include detecting a region, such as an individual processor, of a processor chip is exhibiting a reduced power draw and a resulting localized voltage spike (e.g., a spike that exceeds Vmax) that would accelerate overall device end-of-life (EOL). The described systems respond by activating circuits or current generators located in the given region to draw additional power via a protective current. The protective current lowers the local voltages spikes back to within some pre-specified range (e.g., below a Vmax). The resulting reduction in the time above Vmax in testing reduces the number of devices that will need to be discarded due to Vmax violations as well as increases the expected reliability and lifespan of the device in operation.
    Type: Grant
    Filed: April 5, 2022
    Date of Patent: November 14, 2023
    Assignee: International Business Machines Corporation
    Inventors: Adam Benjamin Collura, Michael Romain, William V. Huott, Pawel Owczarczyk, Christian Jacobi, Anthony Saporito, Chung-Lung K. Shum, Alper Buyuktosunoglu, Tobias Webel, Michael Joseph Cadigan, Jr., Paul Jacob Logsdon, Sean Michael Carey, Stefan Payer, Karl Evan Smock Anderson, Mark Cichanowski
  • Publication number: 20230318286
    Abstract: The method and systems described herein provide for identifying and mitigating undesirable power or voltage fluctuations in regions of a semiconductor device. For example, embodiments include detecting a region, such as an individual processor, of a processor chip is exhibiting a reduced power draw and a resulting localized voltage spike (e.g., a spike that exceeds Vmax) that would accelerate overall device end-of-life (EOL). The described systems respond by activating circuits or current generators located in the given region to draw additional power via a protective current. The protective current lowers the local voltages spikes back to within some pre-specified range (e.g., below a Vmax). The resulting reduction in the time above Vmax in testing reduces the number of devices that will need to be discarded due to Vmax violations as well as increases the expected reliability and lifespan of the device in operation.
    Type: Application
    Filed: April 5, 2022
    Publication date: October 5, 2023
    Inventors: Adam Benjamin COLLURA, Michael ROMAIN, William V. HUOTT, Pawel OWCZARCZYK, Christian JACOBI, Anthony SAPORITO, Chung-Lung K. SHUM, Alper BUYUKTOSUNOGLU, Tobias WEBEL, Michael Joseph CADIGAN, JR., Paul Jacob LOGSDON, Sean Michael CAREY, Stefan PAYER, Karl Evan Smock ANDERSON, Mark CICHANOWSKI
  • Patent number: 11501047
    Abstract: A non-limiting example of a computer-implemented method for error injection includes executing a pre-silicon operation on a simulated chip verifying that a plurality of latches from a timing simulation set error checkers when run against a manufacturing test suite in order to generate a cross-reference file containing latch entries in a table. It executes a first post-silicon operation on a hardware chip based on the simulated chip to determine empirically that timing latches from logic built-in self tests (“LBIST”) trigger the same error checkers set by the plurality of latches verified in the simulated chip. The method updates the cross-reference file based on the results of the determination. The method executes a second post-silicon operation on the hardware chip to improve chip frequency by working around functional checkers using the cross-reference file and updating the cross-reference file based on the results of the improving.
    Type: Grant
    Filed: November 22, 2019
    Date of Patent: November 15, 2022
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Sean Michael Carey, Richard Frank Rizzolo, Bodo Hoppe, Divya Kumudprakash Joshi, Paul Jacob Logsdon, Sreekala Anandavally, William Rurik
  • Publication number: 20210270898
    Abstract: Examples described herein provide a computer-implemented method that includes initiating a logic built-in self-test (LBIST) of a device under test (DUT). The method further includes performing latch state counting using a multiple input signature register (MISR) of the DUT, the performing responsive to the MISR being in a counter mode. The method further includes performing a latch transition counting of latches of the DUT using the MISR of the DUT and a storage latch, the performing responsive to the MISR being in the counter mode. The method further includes performing a latch count comparison by comparing an output of the MISR responsive to the MISR being in the counter mode to an output of a count compare register, the output of the count compare register representing a desired MISR state.
    Type: Application
    Filed: February 28, 2020
    Publication date: September 2, 2021
    Inventors: Franco Motika, Richard Frank Rizzolo, Paul Jacob Logsdon
  • Patent number: 11105853
    Abstract: Examples described herein provide a computer-implemented method that includes initiating a logic built-in self-test (LBIST) of a device under test (DUT). The method further includes performing latch state counting using a multiple input signature register (MISR) of the DUT, the performing responsive to the MISR being in a counter mode. The method further includes performing a latch transition counting of latches of the DUT using the MISR of the DUT and a storage latch, the performing responsive to the MISR being in the counter mode. The method further includes performing a latch count comparison by comparing an output of the MISR responsive to the MISR being in the counter mode to an output of a count compare register, the output of the count compare register representing a desired MISR state.
    Type: Grant
    Filed: February 28, 2020
    Date of Patent: August 31, 2021
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Franco Motika, Richard Frank Rizzolo, Paul Jacob Logsdon
  • Publication number: 20210157963
    Abstract: A non-limiting example of a computer-implemented method for error injection includes executing a pre-silicon operation on a simulated chip verifying that a plurality of latches from a timing simulation set error checkers when run against a manufacturing test suite in order to generate a cross-reference file containing latch entries in a table. It executes a first post-silicon operation on a hardware chip based on the simulated chip to determine empirically that timing latches from logic built-in self tests (“LBIST”) trigger the same error checkers set by the plurality of latches verified in the simulated chip. The method updates the cross-reference file based on the results of the determination. The method executes a second post-silicon operation on the hardware chip to improve chip frequency by working around functional checkers using the cross-reference file and updating the cross-reference file based on the results of the improving.
    Type: Application
    Filed: November 22, 2019
    Publication date: May 27, 2021
    Inventors: Sean Michael Carey, Richard Frank Rizzolo, Bodo Hoppe, Divya Kumudprakash Joshi, Paul Jacob Logsdon, Sreekala Anandavally, WILLIAM RURIK