Patents by Inventor Paul K.y. Wong

Paul K.y. Wong has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9358225
    Abstract: Ataxia-telangiectasia (A-T) is a progressive degenerative disorder that results in major neurological disability. In A-T patients, necropsy has revealed atrophy of all cerebellar cortical layers with extensive Purkinje and granular cell loss. We have previously identified an increase in phospho-p38MAPK levels, which was accompanied by downregulation of Bmi-1 and upregulation of p21, as key components of the mechanism causing defective proliferation of neural stem cells (NSCs) isolated from subventricular zone (SVZ) of Atm-null mice. Our results demonstrate that restoration of NSCs by pharmacologic inhibition of p38MAPK signaling has the potential to treat neurological defects of A-T. This study provides new insights into the therapeutic strategy targeting NSCs rather than replacing impaired neurons not only for A-T, but for other neurodegenerative disorders as well.
    Type: Grant
    Filed: March 17, 2014
    Date of Patent: June 7, 2016
    Assignee: Bach Pharma, Inc.
    Inventor: Paul K. Y. Wong
  • Publication number: 20140303212
    Abstract: Ataxia-telangiectasia (A-T) is a progressive degenerative disorder that results in major neurological disability. In A-T patients, necropsy has revealed atrophy of all cerebellar cortical layers with extensive Purkinje and granular cell loss. We have previously identified an increase in phospho-p38MAPK levels, which was accompanied by downregulation of Bmi-1 and upregulation of p21, as key components of the mechanism causing defective proliferation of neural stem cells (NSCs) isolated from subventricular zone (SVZ) of Atm-null mice. Our results demonstrate that restoration of NSCs by pharmacologic inhibition of p38MAPK signaling has the potential to treat neurological defects of A-T. This study provides new insights into the therapeutic strategy targeting NSCs rather than replacing impaired neurons not only for A-T, but for other neurodegenerative disorders as well.
    Type: Application
    Filed: March 17, 2014
    Publication date: October 9, 2014
    Inventors: Jeesun Kim, Paul K.y. Wong