Patents by Inventor Paul Kadlec

Paul Kadlec has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11512668
    Abstract: A rocket motor has an electrically operated propellant initiator for a propellant grain that includes an electrode arrangement configured to concentrate an electric field at an ignition electrode for igniting an electrically operated propellant. The rocket motor includes a combustion chamber containing at least one propellant grain and an electrically operated propellant initiator operatively coupled to the propellant grain to initiate combustion of the propellant grain. The electrically operated propellant initiator includes the electrically operated propellant and at least one pair of electrodes configured to ignite the electrically operated propellant. The pair of electrodes includes a ground plane electrode and an ignition electrode. When an electrical input is applied to the electrically operated propellant initiator, the electric field is concentrated at the ignition electrode to ignite the electrically operated propellant at the location where the ignition electrode is arranged.
    Type: Grant
    Filed: November 28, 2020
    Date of Patent: November 29, 2022
    Assignee: Raytheon Company
    Inventors: Frederick B. Koehler, Jacob A. Pinello-Benavides, Curtis S. Copeland, Isaiah M. McNeil, Paul Kadlec, Lauren E. Brunacini, Mark T. Langhenry
  • Publication number: 20220170432
    Abstract: A rocket motor has an electrically operated propellant initiator for a propellant grain that includes an electrode arrangement configured to concentrate an electric field at an ignition electrode for igniting an electrically operated propellant. The rocket motor includes a combustion chamber containing at least one propellant grain and an electrically operated propellant initiator operatively coupled to the propellant grain to initiate combustion of the propellant grain. The electrically operated propellant initiator includes the electrically operated propellant and at least one pair of electrodes configured to ignite the electrically operated propellant. The pair of electrodes includes a ground plane electrode and an ignition electrode. When an electrical input is applied to the electrically operated propellant initiator, the electric field is concentrated at the ignition electrode to ignite the electrically operated propellant at the location where the ignition electrode is arranged.
    Type: Application
    Filed: November 28, 2020
    Publication date: June 2, 2022
    Inventors: Frederick B. Koehler, Jacob A. Pinello-Benavides, Curtis S. Copeland, Isaiah M. McNeil, Paul Kadlec, Lauren E. Brunacini, Mark T. Langhenry
  • Patent number: 6867863
    Abstract: A diagnostic system (24) for a PEM (20) provides optically determined information about the retardance characteristics induced by the PEM (20). The diagnostic system (24) is integrated with the PEM (20) so that the PEM (20) performance may be diagnosed or monitored during operation of the PEM (20). Specifically, the diagnostic system (24) is used alongside an optical setup (22) that employs a primary light beam (28) for conventional purposes such as polarimetry, optical metrology, etc. The diagnostic system (24) includes its own diagnostic light source (50) that is directed through the optical element (32) of the PEM (20) at a location remote from the primary aperture (38) of the PEM (20). Thus, the diagnostic system (24) and the primary PEM (20) operation can be undertaken simultaneously, with one not interfering with the other. The output of the diagnostic system reflects the actual retardance characteristic provided by the PEM (20) and can be used as feedback to adjust the PEM control as needed.
    Type: Grant
    Filed: March 31, 2000
    Date of Patent: March 15, 2005
    Assignee: Hinds Instruments
    Inventor: Paul Kadlec
  • Patent number: 6697157
    Abstract: A practical system and method for precisely measuring low-level birefringence properties (retardance and fast axis orientation) of optical materials (26). The system permits multiple measurements to be taken across the area of a sample to detect and graphically display (100) variations in the birefringence properties across the sample area. In a preferred embodiment, the system incorporates a photoelastic modulator (24) for modulating polarized light that is then directed through a sample (26). The beam (“Bi”) propagating from the sample is separated into two parts, with one part (“B1”) having a polarization direction different than the polarization direction of the other beam part (“B2”). These separate beam parts are then processed as distinct channels. Detection mechanisms (32, 50) associated with each channel detect the time varying light intensity corresponding to each of the two parts of the beam.
    Type: Grant
    Filed: September 17, 2002
    Date of Patent: February 24, 2004
    Assignee: Hinds Instruments
    Inventors: Baoliang Wang, Theodore C. Oakberg, Paul Kadlec
  • Publication number: 20030020911
    Abstract: A practical system and method for precisely measuring low-level birefringence properties (retardance and fast axis orientation) of optical materials (26). The system permits multiple measurements to be taken across the area of a sample to detect and graphically display (100) variations in the birefringence properties across the sample area. In a preferred embodiment, the system incorporates a photoelastic modulator (24) for modulating polarized light that is then directed through a sample (26). The beam (“Bi”) propagating from the sample is separated into two parts, with one part (“B1”) having a polarization direction different than the polarization direction of the other beam part (“B2”). These separate beam parts are then processed as distinct channels. Detection mechanisms (32, 50) associated with each channel detect the time varying light intensity corresponding to each of the two parts of the beam.
    Type: Application
    Filed: September 17, 2002
    Publication date: January 30, 2003
    Inventors: Baoliang Wang, Theodore C. Oakberg, Paul Kadlec
  • Patent number: 6473179
    Abstract: A practical system and method for precisely measuring low-level birefrigence properties (retardance and fast axis orientation) of optical materials (26). The system permits multiple measurements to be taken across the area of a sample to detect and graphically display (100) variations in the birefrigence properties across the sample area. In a preferred embodiment, the system incorporates a photoelastic modulator (24) for modulating polarized light that is then directed through a sample (26). The beam (“Bi”) propagating from the sample is separated into two parts, with one part (“B1”) having a polarization direction different than the polarization direction of the other beam part (“B2”). These separate beam parts are then processed as distinct channels. Detection mechanisms (32, 50) associated with each channel detect the time varying light intensity corresponding to each of the two parts of the beam.
    Type: Grant
    Filed: May 24, 1999
    Date of Patent: October 29, 2002
    Assignee: Hinds Instruments, Inc.
    Inventors: Baoliang Wang, Theodore C. Oakberg, Paul Kadlec