Patents by Inventor Paul L. Camwell

Paul L. Camwell has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9458712
    Abstract: A stacked-ring, slow-wave acoustic telemetry isolation system and method for use with tubular assemblies such as drillpipe or production tubing comprising an acoustic wave transmitter, the acoustic isolator behaving such that a “down” wave propagated toward the isolator is reflected back substantially in phase with an “up” wave propagated from the acoustic wave source away from the isolator. The acoustic isolator is similarly effective in reflecting “up” propagating waves originating from below the isolator, hence further protecting the acoustic wave source from possible deleterious interference. It causes substantially all of the emitted wave energy to travel in a chosen direction along the drill pipe, thus aiding the efficiency of acoustic telemetry said pipe.
    Type: Grant
    Filed: March 17, 2015
    Date of Patent: October 4, 2016
    Assignee: XACT Downhole Telemetry, Inc.
    Inventors: Paul L. Camwell, David D. Whalen, Douglas S. Drumheller
  • Publication number: 20150192010
    Abstract: A stacked-ring, slow-wave acoustic telemetry isolation system and method for use with tubular assemblies such as drillpipe or production tubing comprising an acoustic wave transmitter, the acoustic isolator behaving such that a “down” wave propagated toward the isolator is reflected back substantially in phase with an “up” wave propagated from the acoustic wave source away from the isolator. The acoustic isolator is similarly effective in reflecting “up” propagating waves originating from below the isolator, hence further protecting the acoustic wave source from possible deleterious interference. It causes substantially all of the emitted wave energy to travel in a chosen direction along the drill pipe, thus aiding the efficiency of acoustic telemetry said pipe.
    Type: Application
    Filed: March 17, 2015
    Publication date: July 9, 2015
    Inventors: Paul L. Camwell, David D. Whalen, Douglas S. Drumheller
  • Patent number: 8982667
    Abstract: A stacked-ring, slow-wave acoustic telemetry isolation system and method for use with tubular assemblies such as drillpipe or production tubing comprising an acoustic wave transmitter, the acoustic isolator behaving such that a “down” wave propagated toward the isolator is reflected back substantially in phase with an “up” wave propagated from the acoustic wave source away from the isolator. The acoustic isolator is similarly effective in reflecting “up” propagating waves originating from below the isolator, hence further protecting the acoustic wave source from possible deleterious interference. It causes substantially all of the emitted wave energy to travel in a chosen direction along the drill pipe, thus aiding the efficiency of acoustic telemetry said pipe.
    Type: Grant
    Filed: February 12, 2010
    Date of Patent: March 17, 2015
    Assignee: Xact Downhole Telemetry, Inc.
    Inventors: Paul L. Camwell, David D. Whalen, Douglas S. Drumheller
  • Patent number: 8922387
    Abstract: A generally three-part EM gap sub comprising a first conductive cylinder incorporating a male tapered threaded section, a second conductive cylinder incorporating female tapered threaded section, both axially aligned and threaded into each other is described. One or both tapers incorporate slots whereby non-conductive inserts may be placed before assembly of the cylinders. The inserts are designed to cause the thread roots, crests and sides of the tapered sections of both cylinders to be spatially separated. The cylinders can be significantly torqued, one into the other, while maintaining an annular separation and therefore electrical separation as part of the assembly procedure. The co-joined coaxial cylinders can be placed into an injection moulding machine wherein a high performance thermoplastic is injected into the annular space, thereby forming both an insulative gap (the third part) and a strong joint between the cylinders in the newly created EM gap sub.
    Type: Grant
    Filed: April 14, 2011
    Date of Patent: December 30, 2014
    Assignee: XACT Downhole Telemetry, Inc.
    Inventors: Paul L. Camwell, David D. Whalen
  • Patent number: 8823543
    Abstract: Non-contacting means of measuring the material velocities of harmonic acoustic telemetry waves travelling along the wall of drillpipe, production tubing or coiled tubing are disclosed. Also disclosed are contacting means, enabling measurement of accelerations or material velocities associated with acoustic telemetry waves travelling along the wall of the tubing, utilizing as a detector either a wireless accelerometer system or an optical means, or both; these may also be applied to mud pulse telemetry, wherein the telemetry waves are carried via the drilling fluid, causing strain in the pipe wall that in turn causes wall deformation that can be directly or indirectly assessed by optical means. The present invention enables detection of telemetry wave detection in space-constrained situations. The invention also teaches a substantially contactless method of determining the time-based changes of the propagating telemetry waves.
    Type: Grant
    Filed: March 11, 2011
    Date of Patent: September 2, 2014
    Assignee: XACT Downhole Telemetry Inc.
    Inventors: Paul L. Camwell, James M. Neff, Douglas S. Drumheller
  • Publication number: 20140112100
    Abstract: A system and method of optimizing air hammer performance in a well drilling rig whereby an electronic acoustic receiver (EAR) is used to monitor the effects of changing any of the operating parameters under his or her control. The signals are visually presented to the drill operator based on an EAR's output, along with current settings, allowing the drill operator to dial in the parameters of his or her choice until the optimal frequency of the air hammer is regained. The visual output displays the amplitude response of acoustic waves being detected and decoded at the surface by the EAR. The drill operator can observe and use this information to determine the changes necessary in the operating parameters to return the hammer to optimal frequency, and thus optimal performance.
    Type: Application
    Filed: December 30, 2013
    Publication date: April 24, 2014
    Applicant: Xact Downhole Telemetry, Inc.
    Inventors: Paul L. Camwell, James M. Neff
  • Patent number: 8634274
    Abstract: A spindle for a mud pulse telemetry tool includes a seal section having an outer surface for contacting a lip seal of a spindle housing in which the spindle is mounted; a top section attachable to at least part of a valve assembly for generating mud pulses; and a base section having a proximal end attachable to a drive motor for moving the spindle and a distal end attachable to the top section such that the annular seal is fixed between the top and base sections. The seal section can be made of a ceramic material such as yttrium-stabilized zirconia.
    Type: Grant
    Filed: April 11, 2012
    Date of Patent: January 21, 2014
    Assignee: Schlumberger Technology Corporation
    Inventors: Paul L. Camwell, David A. Switzer, Anthony R. Dopf, Laura C. Neels-Slingerland
  • Patent number: 8624464
    Abstract: A brush and brush housing arrangement for use with an electric brushed motor containing viscous fluid. The brush and brush housing arrangement comprises a brush housing and at least one brush. The at least one brush comprising a first end that is in contact with a rotating commutator of the motor when in use and an opposed second end. At least one open-faced channel in a surface of the brush extends from the first end to the second end. The open-faced channel provides an exit for entrained fluid from the brush and brush housing, minimizing or eliminating brush lift caused by fluid being forced between the rotating commutator and the brush. Additional pressure relief channels for allowing escape of entrained fluid may be located in the housing.
    Type: Grant
    Filed: September 21, 2010
    Date of Patent: January 7, 2014
    Assignee: Schlumberger Technology Corporation
    Inventors: Anthony R. Dopf, Paul L. Camwell, Derek W. Logan, Timothy Neff
  • Patent number: 8437220
    Abstract: An acoustic telemetry isolation system and method for use with tubular assemblies such as drillpipe and production tubing includes an acoustic wave transmitter and an acoustic isolator. A “down” wave propagated toward the isolator is reflected back substantially in phase with an “up” wave propagated from the acoustic wave source away from the isolator. Furthermore, the acoustic isolator is similarly effective in reflecting “up” propagating waves originating from below the isolator, hence further protecting the acoustic wave source from possible deleterious interference. The construction of the isolator utilizes a specified combination of waves traveling in parallel in materials whose properties aid the beneficial combination of reflected and transmitted waves. The design of the isolator is to generally provide a bandstop filter function, thereby aiding the frequency isolation of an acoustic transmitter over a passband that may be constrained by the geometry of drill pipe or components of production tubing.
    Type: Grant
    Filed: February 1, 2010
    Date of Patent: May 7, 2013
    Assignee: Xact Downhold Telemetry, Inc.
    Inventors: Paul L. Camwell, David D. Whalen, Douglas S. Drumheller
  • Patent number: 8393412
    Abstract: A system and method of closed loop control whereby groupings of surface sonic transmitters disposed along the planned path of a well send sonic wave energy to a downhole sonic receiver (or alternatively a downhole sonic transmitter signalling to grouping of surface sonic receivers) in a manner that facilitates the downhole positioning of the well. Subsequent offset well positioning, relative to the first well, may be achieved in a similar manner.
    Type: Grant
    Filed: February 11, 2010
    Date of Patent: March 12, 2013
    Assignee: Xact Downhole Telemetry, Inc.
    Inventors: Paul L. Camwell, John G. McRory, David D. Whalen, James M. Neff
  • Patent number: 8308199
    Abstract: A gap sub assembly can be used to form an electrical isolation in a drill string, across which a voltage is applied to generate a carrier signal for an electromagnetic (EM) telemetry system. The assembly comprises two conductive generally cylindrical components fashioned with a matching set of male and female rounded coarse threads, held such that a relatively uniform interstitial space is formed in the overlap space between them. The third component is a substantially dielectric electrical isolator component placed into the gap between the threads that effectively electrically isolates the two conductive components. Injecting the dielectric material under high pressure forms a tight bond resistant to the ingress of conductive drilling fluids (liquids, gases or foam), thus forming a high pressure insulating seal.
    Type: Grant
    Filed: October 25, 2010
    Date of Patent: November 13, 2012
    Assignee: Schlumberger Technology Corporation
    Inventors: Paul L. Camwell, Derek W. Logan, David D. Whalen, Thomas H. Vermeeren, Anthony R. Dopf
  • Patent number: 8270251
    Abstract: An acoustic isolator for use with tubular assemblies such as drillpipe or production tubing comprising an acoustic wave transmitter, the acoustic isolator comprising, in series connection, an odd integer ?/4 multiple tuning bar of first acoustic impedance adjacent the acoustic wave transmitter, an odd integer ?/4 multiple reflector tube of second acoustic impedance, and a snubber of third acoustic impedance, wherein there is an acoustic impedance mismatch between the odd integer ?/4 multiple tuning bar and the odd integer ?/4 multiple reflector tube and an acoustic impedance mismatch between the odd integer ?/4 multiple reflector tube and snubber, such that a ‘down’ wave propagated toward the isolator is reflected back substantially in phase with an ‘up’ wave propagated from the acoustic wave source away from the isolator.
    Type: Grant
    Filed: December 22, 2009
    Date of Patent: September 18, 2012
    Assignee: XACT Downhole Telemetry Inc.
    Inventors: Douglas S. Drumheller, Paul L. Camwell, Anthony R. Dopf, Derek W. Logan
  • Publication number: 20120222899
    Abstract: A spindle for a mud pulse telemetry tool includes a seal section having an outer surface for contacting a lip seal of a spindle housing in which the spindle is mounted; a top section attachable to at least part of a valve assembly for generating mud pulses; and a base section having a proximal end attachable to a drive motor for moving the spindle and a distal end attachable to the top section such that the annular seal is fixed between the top and base sections. The seal section can be made of a ceramic material such as yttrium-stabilized zirconia.
    Type: Application
    Filed: April 11, 2012
    Publication date: September 6, 2012
    Inventors: Paul L. Camwell, David A. Switzer, Anthony R. Dopf, Laura C. Neels-Slingerland
  • Patent number: 8174929
    Abstract: The present disclosure describes a spindle for a mud pulse telemetry tool. The spindle includes a seal section having an outer surface for contacting a lip seal of a spindle housing in which the spindle is mounted; a top section attachable to at least part of a valve assembly for generating mud pulses; and a base section having a proximal end attachable to a drive motor for moving the spindle and a distal end attachable to the top section such that the seal section is fixed between the top and base sections. The seal section can be made of a ceramic material such as yttrium-stabilized zirconia.
    Type: Grant
    Filed: July 1, 2008
    Date of Patent: May 8, 2012
    Assignee: Schlumberger Technology Corporation
    Inventors: Paul L. Camwell, David A. Switzer, Anthony R. Dopf, Laura C. Neels-Slingerland
  • Patent number: 8115651
    Abstract: A method is provided which transmits information using a plurality of data transmission nodes situated along a drill string. In this method, a first node obtains a transmission status of a second node. When the transmission status of the second node indicates that the second node meets a selected performance threshold, information is sent from the first node to the second node. When the transmission status of the second node indicates that the second node does not meet its performance threshold, then the first node obtains a transmission status of a third node. When the transmission status of the third node indicates that the third node meets a selected performance threshold, information is transmitted from the first node to the third node for relaying along the drill string.
    Type: Grant
    Filed: April 11, 2008
    Date of Patent: February 14, 2012
    Assignee: XACT Downhole Telemetry Inc.
    Inventors: Paul L. Camwell, James M. Neff, Derek W. Logan
  • Publication number: 20110254695
    Abstract: A generally three-part EM gap sub comprising a first conductive cylinder incorporating a male tapered threaded section, a second conductive cylinder incorporating female tapered threaded section, both axially aligned and threaded into each other is described. One or both tapers incorporate slots whereby non-conductive inserts may be placed before assembly of the cylinders. The inserts are designed to cause the thread roots, crests and sides of the tapered sections of both cylinders to be spatially separated. The cylinders can be significantly torqued, one into the other, while maintaining an annular separation and therefore electrical separation as part of the assembly procedure. The co-joined coaxial cylinders can be placed into an injection moulding machine wherein a high performance thermoplastic is injected into the annular space, thereby forming both an insulative gap (the third part) and a strong joint between the cylinders in the newly created EM gap sub.
    Type: Application
    Filed: April 14, 2011
    Publication date: October 20, 2011
    Inventors: Paul L. Camwell, David D. Whalen
  • Publication number: 20110227447
    Abstract: A brush and brush housing arrangement for use with an electric brushed motor containing viscous fluid. The brush and brush housing arrangement comprises a brush housing and at least one brush. The at least one brush comprising a first end that is in contact with a rotating commutator of the motor when in use and an opposed second end. At least one open-faced channel in a surface of the brush extends from the first end to the second end. The open-faced channel provides an exit for entrained fluid from the brush and brush housing, minimizing or eliminating brush lift caused by fluid being forced between the rotating commutator and the brush. Additional pressure relief channels for allowing escape of entrained fluid may be located in the housing.
    Type: Application
    Filed: September 21, 2010
    Publication date: September 22, 2011
    Applicant: Schlumberger Technology Corporation
    Inventors: Anthony R. Dopf, Paul L. Camwell, Derek W. Logan, Timothy Neff
  • Patent number: 8022840
    Abstract: A method for enhancing downhole telemetry performance comprising enhancing a signal in order to offset signal-to-noise ratio reduction with increasing measured depth, wherein the signal is modified at specified measured depths which are inferred from acoustic wave velocity determination.
    Type: Grant
    Filed: September 9, 2010
    Date of Patent: September 20, 2011
    Assignee: XACT Downhole Telemetry Inc.
    Inventors: Paul L. Camwell, James M. Neff
  • Publication number: 20110163889
    Abstract: Non-contacting means of measuring the material velocities of harmonic acoustic telemetry waves travelling along the wall of drillpipe, production tubing or coiled tubing are disclosed. Also disclosed are contacting means, enabling measurement of accelerations or material velocities associated with acoustic telemetry waves travelling along the wall of the tubing, utilizing as a detector either a wireless accelerometer system or an optical means, or both; these may also be applied to mud pulse telemetry, wherein the telemetry waves are carried via the drilling fluid, causing strain in the pipe wall that in turn causes wall deformation that can be directly or indirectly assessed by optical means. The present invention enables detection of telemetry wave detection in space-constrained situations. The invention also teaches a substantially contactless method of determining the time-based changes of the propagating telemetry waves.
    Type: Application
    Filed: March 11, 2011
    Publication date: July 7, 2011
    Inventors: Paul L. Camwell, James M. Neff, Douglas S. Drumheller
  • Publication number: 20110141852
    Abstract: A system and method of optimizing air hammer performance in a well drilling rig whereby an electronic acoustic receiver (EAR) is used to monitor the effects of changing any of the operating parameters under his or her control. The signals are visually presented to the drill operator based on an EAR's output, along with current settings, allowing the drill operator to dial in the parameters of his or her choice until the optimal frequency of the air hammer is regained. The visual output displays the amplitude response of acoustic waves being detected and decoded at the surface by the EAR. The drill operator can observe and use this information to determine the changes necessary in the operating parameters to return the hammer to optimal frequency, and thus optimal performance.
    Type: Application
    Filed: June 14, 2010
    Publication date: June 16, 2011
    Inventors: Paul L. Camwell, James M. Neff