Patents by Inventor Paul L. Tanaka

Paul L. Tanaka has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10035096
    Abstract: The present application is directed to a method and system for preparing gaseous utility streams from gaseous process streams, particularly, removing oil contamination from such streams prior to use in a dry gas seal. The methods and systems may include at least one kinetic swing adsorption process including pressure swing adsorption, temperature swing adsorption, calcination, and inert purge processes to treat gaseous streams for use in dry gas seals of rotating equipment such as compressors, turbines and pumps and other utilities. The adsorbent materials used include a high surface area solid structured microporous and mesoporous materials.
    Type: Grant
    Filed: July 23, 2015
    Date of Patent: July 31, 2018
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Harry W. Deckman, Preeti Kamakoti, Peter I. Ravikovitch, Bruce T. Kelley, P. Scott Northrop, Peter C. Rasmussen, Paul L. Tanaka, Martin N. Webster, Wieslaw J. Roth, Edward W. Corcoran, Jr.
  • Patent number: 9457295
    Abstract: Systems and methods for separating mine tailings from water-absorbing polymers and regenerating the separated water-absorbing polymers. The systems and methods include a separation assembly that is configured to receive an augmented mine tailings slurry that includes mine tailings, water, and a swollen water-absorbing polymer. The separation assembly separates the swollen water-absorbing polymer from the augmented mine tailings slurry to produce a dewatered mine tailings slurry. The systems and methods further include a water-absorbing polymer regeneration unit that is configured to receive the swollen water-absorbing polymer. The water-absorbing polymer regeneration unit at least partially releases water from the swollen water-absorbing polymer to produce a regenerated water-absorbing polymer, and as a separate output or product, the released water.
    Type: Grant
    Filed: March 21, 2014
    Date of Patent: October 4, 2016
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Wei Ren, Paul L. Tanaka, Aaron Ortiz Gomez, Babak A. Jajuee, Chien-Chiang Chen, Robert D. Kaminsky
  • Patent number: 9322253
    Abstract: Embodiments described herein provide a system and methods for the production of hydrocarbons. The method includes flowing a stream directly from a hydrocarbon reservoir to a cavern and performing a phase separation of the stream within the cavern to form an aqueous phase and an organic phase. The method also includes flowing at least a portion of the aqueous phase or the organic phase, or both, directly from the cavern to a subsurface location and offloading at least a portion of the organic phase from the cavern to a surface.
    Type: Grant
    Filed: November 16, 2012
    Date of Patent: April 26, 2016
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Michael D. Barry, James S. Brown, Daniel P. Leta, Moses K. Minta, Scott M. Whitney, Paul L. Tanaka
  • Publication number: 20150328578
    Abstract: The present application is directed to a method and system for preparing gaseous utility streams from gaseous process streams, particularly, removing oil contamination from such streams prior to use in a dry gas seal. The methods and systems may include at least one kinetic swing adsorption process including pressure swing adsorption, temperature swing adsorption, calcination, and inert purge processes to treat gaseous streams for use in dry gas seals of rotating equipment such as compressors, turbines and pumps and other utilities. The adsorbent materials used include a high surface area solid structured microporous and mesoporous materials.
    Type: Application
    Filed: July 23, 2015
    Publication date: November 19, 2015
    Inventors: Harry W. Deckman, Preeti Kamakoti, Peter I. Ravikovitch, Bruce T. Kelley, P. Scott Northrop, Peter C. Rasmussen, Paul L. Tanaka, Martin N. Webster, Wieslaw J. Roth, Edward W. Corcoran, JR.
  • Patent number: 8906138
    Abstract: The present application is directed to a method and system for preparing gaseous utility streams from gaseous process streams, nitrogen process streams, and other types of streams. The methods and systems may include at least one swing adsorption process including pressure swing adsorption, temperature swing adsorption, and rapid-cycle adsorption processes to treat gaseous streams for use in dry gas seals of rotating equipment such as compressors, turbines and pumps and for other utilities. The systems and processes of the present disclosure are further applicable to high pressure gaseous streams, for example, up to about 600 bar.
    Type: Grant
    Filed: October 14, 2008
    Date of Patent: December 9, 2014
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Peter C. Rasmussen, Paul L. Tanaka, Bruce T. Kelley, Stanley O. Uptigrove, Harry W. Deckman
  • Publication number: 20140338921
    Abstract: Embodiments described herein provide a system and methods for the production of hydrocarbons. The method includes flowing a stream directly from a hydrocarbon reservoir to a cavern and performing a phase separation of the stream within the cavern to form an aqueous phase and an organic phase. The method also includes flowing at least a portion of the aqueous phase or the organic phase, or both, directly from the cavern to a subsurface location and offloading at least a portion of the organic phase from the cavern to a surface.
    Type: Application
    Filed: November 16, 2012
    Publication date: November 20, 2014
    Inventors: Michael D. Barry, James S. Brown, Daniel P. Leta, Moses K. Minta, Scott M. Whitney, Paul L. Tanaka
  • Publication number: 20140305000
    Abstract: Systems and methods for dewatering mine tailings with water-absorbing polymers. The systems and methods may include combining a mine tailings slurry, which includes mine tailings and water, with a water-absorbing polymer. The water-absorbing polymer may absorb water from the mine tailings, thereby increasing a solids content of the mine tailings. The mine tailings may be combined with the water-absorbing polymer prior to, during, and/or subsequent to transfer of the mine tailings to a mine tailings dewatering and/or disposal site. In some embodiments, the water-absorbing polymer may be an encapsulated water-absorbing polymer.
    Type: Application
    Filed: March 12, 2014
    Publication date: October 16, 2014
    Inventors: Wei Ren, Ken N. Sury, Paul L. Tanaka, David C. Rennard, Scott R. Clingman, Thomas R. Palmer
  • Publication number: 20140305873
    Abstract: Systems and methods for separating mine tailings from water-absorbing polymers and regenerating the separated water-absorbing polymers. The systems and methods include a separation assembly that is configured to receive an augmented mine tailings slurry that includes mine tailings, water, and a swollen water-absorbing polymer. The separation assembly separates the swollen water-absorbing polymer from the augmented mine tailings slurry to produce a dewatered mine tailings slurry. The systems and methods further include a water-absorbing polymer regeneration unit that is configured to receive the swollen water-absorbing polymer. The water-absorbing polymer regeneration unit at least partially releases water from the swollen water-absorbing polymer to produce a regenerated water-absorbing polymer, and as a separate output or product, the released water.
    Type: Application
    Filed: March 21, 2014
    Publication date: October 16, 2014
    Inventors: Wei Ren, Paul L. Tanaka, Aaron Ortiz Gomez, Babak A. Jajuee, Chien-Chiang Chen, Robert D. Kaminsky
  • Publication number: 20100212493
    Abstract: The present application is directed to a method and system for preparing gaseous utility streams from gaseous process streams, nitrogen process streams, and other types of streams. The methods and systems may include at least one swing adsorption process including pressure swing adsorption, temperature swing adsorption, and rapid-cycle adsorption processes to treat gaseous streams for use in dry gas seals of rotating equipment such as compressors, turbines and pumps and for other utilities. The systems and processes of the present disclosure are further applicable to high pressure gaseous streams, for example, up to about 600 bar.
    Type: Application
    Filed: October 14, 2008
    Publication date: August 26, 2010
    Inventors: Peter C. Rasmussen, Paul L. Tanaka, Bruce T. Kelley, Stanley O. Uptigrove, Harry W. Deckman