Patents by Inventor Paul Lundquist

Paul Lundquist has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10436907
    Abstract: Provided herein are systems and methods for an active sensing instrument actively utilizing the Christiansen effect to sense and adapt to suspended scatterers such as dust. The instrument enhances detection of remote surfaces that are partially or fully obscured at visual wavelengths due to those suspended scatterers. The system also may be used to measure properties and spatial distributions of the suspended scatterers themselves. Though the system is broadly applicable to remote detection through scattering media, it is particularly drawn to remote sensing through dust particles in the atmosphere as may be produced from helicopter fly-overs, dust storms, or other events that draw up substantial concentrations of mineral-based dust particles into the air.
    Type: Grant
    Filed: October 12, 2015
    Date of Patent: October 8, 2019
    Assignee: Arete Associates
    Inventors: James Murray, Paul Lundquist, Jason Seely, Steve Rako, Micah Boyd
  • Publication number: 20190292590
    Abstract: This invention provides substrates for use in various applications, including single-molecule analytical reactions. Methods for propagating optical energy within a substrate are provided. Devices comprising waveguide substrates and dielectric omnidirectional reflectors are provided. Waveguide substrates with improved uniformity of optical energy intensity across one or more waveguides and enhanced waveguide illumination efficiency within an analytic detection region of the arrays are provided.
    Type: Application
    Filed: February 28, 2019
    Publication date: September 26, 2019
    Inventors: Cheng Frank Zhong, Paul Lundquist, Mathieu Foquet, Jonas Korlach, Hovig Bayandorian
  • Publication number: 20190256911
    Abstract: Optical analytical devices and their methods of use are provided. The devices are useful in the analysis of highly multiplexed optical reactions in large numbers at high densities, including biochemical reactions, such as nucleic acid sequencing reactions. The devices include integrated illumination elements and optical waveguides for illumination of the optical reactions. The devices further provide for the efficient coupling of optical excitation energy from the waveguides to the optical reactions. Optical signals emitted from the reactions can thus be measured with high sensitivity and discrimination using features such as spectra, amplitude, and time resolution, or combinations thereof. The devices of the invention are well suited for miniaturization and high throughput.
    Type: Application
    Filed: December 3, 2018
    Publication date: August 22, 2019
    Inventors: Paul LUNDQUIST, Stephen TURNER
  • Patent number: 10365434
    Abstract: Integrated target waveguide devices and optical analytical systems comprising such devices are provided. The target devices include an optical coupler that is optically coupled to an integrated waveguide and that is configured to receive optical input from an optical source through free space, particularly through a low numerical aperture interface. The devices and systems are useful in the analysis of highly multiplexed optical reactions in large numbers at high densities, including biochemical reactions, such as nucleic acid sequencing reactions. The devices provide for the efficient and reliable coupling of optical excitation energy from an optical source to the optical reactions. Optical signals emitted from the reactions can thus be measured with high sensitivity and discrimination. The devices and systems are well suited for miniaturization and high throughput.
    Type: Grant
    Filed: June 11, 2016
    Date of Patent: July 30, 2019
    Assignee: Pacific Biosciences of California, Inc.
    Inventors: Shang Wang, Mathieu Foquet, Paul Lundquist, Aaron Rulison, Mark McDonald, Ariel Herrmann
  • Publication number: 20190228007
    Abstract: An interactive vehicle information map system is disclosed in which, in various embodiments, geographical, geospatial, vehicle, and other types of data, geodata, objects, features, and/or metadata are efficiently presented to a user on an interactive map interface. In an embodiment, the user may search vehicle-related data via the interactive map by providing search criteria including, for example, information regarding a geographic area, a time period, a vehicle, a vehicle owner, and/or a license plate number, among other items. The map system may provide search results including a list of vehicles that match the search criteria, vehicle information, and/or points on the interactive map that indicate license-plate recognition read locations, among other information. In an embodiment, the user may view detailed information associated with particular vehicles including, for example, captured images, vehicle-owner data, event history, and the like. Further, the user may export data and/or create search alerts.
    Type: Application
    Filed: March 29, 2019
    Publication date: July 25, 2019
    Inventors: Mitchell Beard, Michael Glazer, Robin Lim, Sina Iman, Mark Basoa, Tristan Huber, Paul Ryan, Youssef Moussaoui, Bonnie McLindon, Nick White, Alexander Vasilyev, Mark Lundquist
  • Patent number: 10302972
    Abstract: We have seen that some waveguides exhibit variable and increasing back reflection of single wavelength illumination over time, limiting their effectiveness and reliability. We have developed approaches to improve the transmission of these waveguides. We have found that by modulating the illumination wavelength over a small wavelength range we can reduce or eliminate this back reflection from the waveguide. In addition, we describe the writing and erasing of gratings within SiON waveguides by forming standing waves. Methods, systems, instruments, and devices are described that provide improved transmission of light through such waveguides.
    Type: Grant
    Filed: January 21, 2016
    Date of Patent: May 28, 2019
    Assignee: Pacific Biosciences of California, Inc.
    Inventors: Mark McDonald, Aaron Rulison, Paul Lundquist, Tsuei-Lian Wang, Deborah Pao-Tung Kwo, Shang Wang
  • Patent number: 10280457
    Abstract: This invention provides substrates for use in various applications, including single-molecule analytical reactions. Methods for propagating optical energy within a substrate are provided. Devices comprising waveguide substrates and dielectric omnidirectional reflectors are provided. Waveguide substrates with improved uniformity of optical energy intensity across one or more waveguides and enhanced waveguide illumination efficiency within an analytic detection region of the arrays are provided.
    Type: Grant
    Filed: June 21, 2017
    Date of Patent: May 7, 2019
    Assignee: Pacific Biosciences of California, Inc.
    Inventors: Cheng Frank Zhong, Paul Lundquist, Mathieu Foquet, Jonas Korlach, Hovig Bayandorian
  • Patent number: 10234393
    Abstract: Arrays of integrated analytical devices and their methods for production are provided. The arrays are useful in the analysis of highly multiplexed optical reactions in large numbers at high densities, including biochemical reactions, such as nucleic acid sequencing reactions. The devices allow the highly sensitive discrimination of optical signals using features such as spectra, amplitude, and time resolution, or combinations thereof. The devices include an integrated diffractive beam shaping element that provides for the spatial separation of light emitted from the optical reactions.
    Type: Grant
    Filed: February 20, 2018
    Date of Patent: March 19, 2019
    Assignee: Pacific Biosciences of California, Inc.
    Inventors: Annette Grot, Ravi Saxena, Paul Lundquist
  • Publication number: 20190064421
    Abstract: Optical analytical devices and their methods of use are provided. The devices are useful in the analysis of highly multiplexed optical reactions in large numbers at high densities, including biochemical reactions, such as nucleic acid sequencing reactions. The devices include optical waveguides for illumination of the optical reactions. The devices further provide for the efficient coupling of optical excitation energy from the waveguides to the optical reactions. Optical signals emitted from the reactions can thus be measured with high sensitivity and discrimination using features such as spectra, amplitude, and time resolution, or combinations thereof. The devices of the invention are well suited for miniaturization and high throughput.
    Type: Application
    Filed: July 9, 2018
    Publication date: February 28, 2019
    Inventors: Annette GROT, Shang WANG, Hans CALLEBAUT, Paul LUNDQUIST, Stephen TURNER
  • Patent number: 10144963
    Abstract: Optical analytical devices and their methods of use are provided. The devices are useful in the analysis of highly multiplexed optical reactions in large numbers at high densities, including biochemical reactions, such as nucleic acid sequencing reactions. The devices include integrated illumination elements and optical waveguides for illumination of the optical reactions. The devices further provide for the efficient coupling of optical excitation energy from the waveguides to the optical reactions. Optical signals emitted from the reactions can thus be measured with high sensitivity and discrimination using features such as spectra, amplitude, and time resolution, or combinations thereof. The devices of the invention are well suited for miniaturization and high throughput.
    Type: Grant
    Filed: April 17, 2017
    Date of Patent: December 4, 2018
    Assignee: Pacific Biosciences of California, Inc.
    Inventors: Paul Lundquist, Stephen Turner
  • Patent number: 10018764
    Abstract: Optical analytical devices and their methods of use are provided. The devices are useful in the analysis of highly multiplexed optical reactions in large numbers at high densities, including biochemical reactions, such as nucleic acid sequencing reactions. The devices include optical waveguides for illumination of the optical reactions. The devices further provide for the efficient coupling of optical excitation energy from the waveguides to the optical reactions. Optical signals emitted from the reactions can thus be measured with high sensitivity and discrimination using features such as spectra, amplitude, and time resolution, or combinations thereof. The devices of the invention are well suited for miniaturization and high throughput.
    Type: Grant
    Filed: November 18, 2015
    Date of Patent: July 10, 2018
    Assignee: Pacific Biosciences of California
    Inventors: Annette Grot, Shang Wang, Hans Callebaut, Paul Lundquist, Stephen Turner
  • Publication number: 20180180548
    Abstract: Arrays of integrated analytical devices and their methods for production are provided. The arrays are useful in the analysis of highly multiplexed optical reactions in large numbers at high densities, including biochemical reactions, such as nucleic acid sequencing reactions. The devices allow the highly sensitive discrimination of optical signals using features such as spectra, amplitude, and time resolution, or combinations thereof. The devices include an integrated diffractive beam shaping element that provides for the spatial separation of light emitted from the optical reactions.
    Type: Application
    Filed: February 20, 2018
    Publication date: June 28, 2018
    Inventors: Annette GROT, Ravi SAXENA, Paul LUNDQUIST
  • Patent number: 9945781
    Abstract: Apparatus, systems and methods for use in analyzing discrete reactions are provided. The analytical devices of the invention use an array of nanoscale regions (a chip) that has discrete patches, for example, patches of nanoscale regions. In some embodiments an analytical system is provided that has an analysis chip with an array of patches, each of the patches comprising nanoscale regions that emit fluorescent light when illuminated. The system has a two-dimensional (x, y) array of dichroic prisms, each prism comprising a dichroic element that diverts illumination light up in the z dimension of the array to a patch on the analysis chip above it. Each dichroic element transmits fluorescent light emitted by the patch that it illuminates, whereby the emitted light from each patch passes down through each dichroic prism. The analytical system also has a detector below the array of dichroic prisms that detects the transmitted fluorescent light.
    Type: Grant
    Filed: January 17, 2017
    Date of Patent: April 17, 2018
    Assignee: Pacific Biosciences of California, Inc.
    Inventors: Aaron Rulison, Mark McDonald, Paul Lundquist
  • Patent number: 9915612
    Abstract: Arrays of integrated analytical devices and their methods for production are provided. The arrays are useful in the analysis of highly multiplexed optical reactions in large numbers at high densities, including biochemical reactions, such as nucleic acid sequencing reactions. The devices allow the highly sensitive discrimination of optical signals using features such as spectra, amplitude, and time resolution, or combinations thereof. The devices include an integrated diffractive beam shaping element that provides for the spatial separation of light emitted from the optical reactions.
    Type: Grant
    Filed: March 6, 2017
    Date of Patent: March 13, 2018
    Assignee: Pacific Biosciences of California, Inc.
    Inventors: Annette Grot, Ravi Saxena, Paul Lundquist
  • Publication number: 20170362652
    Abstract: This invention provides substrates for use in various applications, including single-molecule analytical reactions. Methods for propagating optical energy within a substrate are provided. Devices comprising waveguide substrates and dielectric omnidirectional reflectors are provided. Waveguide substrates with improved uniformity of optical energy intensity across one or more waveguides and enhanced waveguide illumination efficiency within an analytic detection region of the arrays are provided.
    Type: Application
    Filed: June 21, 2017
    Publication date: December 21, 2017
    Inventors: Cheng Frank Zhong, Paul Lundquist, Mathieu Foquet, Jonas Korlach, Hovig Bayandorian
  • Publication number: 20170219492
    Abstract: Optical analytical devices and their methods of use are provided. The devices are useful in the analysis of highly multiplexed optical reactions in large numbers at high densities, including biochemical reactions, such as nucleic acid sequencing reactions. The devices include integrated illumination elements and optical waveguides for illumination of the optical reactions. The devices further provide for the efficient coupling of optical excitation energy from the waveguides to the optical reactions. Optical signals emitted from the reactions can thus be measured with high sensitivity and discrimination using features such as spectra, amplitude, and time resolution, or combinations thereof. The devices of the invention are well suited for miniaturization and high throughput.
    Type: Application
    Filed: April 17, 2017
    Publication date: August 3, 2017
    Inventors: Paul LUNDQUIST, Stephen TURNER
  • Patent number: 9719138
    Abstract: This invention provides substrates for use in various applications, including single-molecule analytical reactions. Methods for propagating optical energy within a substrate are provided. Devices comprising waveguide substrates and dielectric omnidirectional reflectors are provided. Waveguide substrates with improved uniformity of optical energy intensity across one or more waveguides and enhanced waveguide illumination efficiency within an analytic detection region of the arrays are provided.
    Type: Grant
    Filed: November 23, 2015
    Date of Patent: August 1, 2017
    Assignee: Pacific Biosciences of California, Inc.
    Inventors: Cheng Frank Zhong, Paul Lundquist, Mathieu Foquet, Jonas Korlach, Hovig Bayandorian
  • Publication number: 20170176335
    Abstract: Arrays of integrated analytical devices and their methods for production are provided. The arrays are useful in the analysis of highly multiplexed optical reactions in large numbers at high densities, including biochemical reactions, such as nucleic acid sequencing reactions. The devices allow the highly sensitive discrimination of optical signals using features such as spectra, amplitude, and time resolution, or combinations thereof. The devices include an integrated diffractive beam shaping element that provides for the spatial separation of light emitted from the optical reactions.
    Type: Application
    Filed: March 6, 2017
    Publication date: June 22, 2017
    Inventors: Annette GROT, Ravi SAXENA, Paul LUNDQUIST
  • Publication number: 20170167979
    Abstract: Apparatus, systems and methods for use in analyzing discrete reactions are provided. The analytical devices of the invention use an array of nanoscale regions (a chip) that has discrete patches, for example, patches of nanoscale regions. In some embodiments an analytical system is provided that has an analysis chip with an array of patches, each of the patches comprising nanoscale regions that emit fluorescent light when illuminated. The system has a two-dimensional (x, y) array of dichroic prisms, each prism comprising a dichroic element that diverts illumination light up in the z dimension of the array to a patch on the analysis chip above it. Each dichroic element transmits fluorescent light emitted by the patch that it illuminates, whereby the emitted light from each patch passes down through each dichroic prism. The analytical system also has a detector below the array of dichroic prisms that detects the transmitted fluorescent light.
    Type: Application
    Filed: January 17, 2017
    Publication date: June 15, 2017
    Inventors: Aaron Rulison, Mark McDonald, Paul Lundquist
  • Patent number: 9624540
    Abstract: Optical analytical devices and their methods of use are provided. The devices are useful in the analysis of highly multiplexed optical reactions in large numbers at high densities, including biochemical reactions, such as nucleic acid sequencing reactions. The devices include integrated illumination elements and optical waveguides for illumination of the optical reactions. The devices further provide for the efficient coupling of optical excitation energy from the waveguides to the optical reactions. Optical signals emitted from the reactions can thus be measured with high sensitivity and discrimination using features such as spectra, amplitude, and time resolution, or combinations thereof. The devices of the invention are well suited for miniaturization and high throughput.
    Type: Grant
    Filed: February 21, 2014
    Date of Patent: April 18, 2017
    Assignee: Pacific Biosciences of California, Inc.
    Inventors: Paul Lundquist, Stephen Turner