Patents by Inventor Paul Murrin

Paul Murrin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11755474
    Abstract: Tile based interleaving and de-interleaving of row-column interleaved data is described. In one example, the de-interleaving is divided into two memory transfer stages, the first from an on-chip memory to a DRAM and the second from the DRAM to an on-chip memory. Each stage operates on part of a row-column interleaved block of data and re-orders the data items, such that the output of the second stage comprises de-interleaved data. In the first stage, data items are read from the on-chip memory according to a non-linear sequence of memory read addresses and written to the DRAM. In the second stage, data items are read from the DRAM according to bursts of linear address sequences which make efficient use of the DRAM interface and written back to on-chip memory according to a non-linear sequence of memory write addresses.
    Type: Grant
    Filed: November 18, 2021
    Date of Patent: September 12, 2023
    Assignee: Imagination Technologies Limited
    Inventors: Paul Murrin, Adrian J. Anderson, Mohammed El-Hajjar
  • Publication number: 20220075723
    Abstract: Tile based interleaving and de-interleaving of row-column interleaved data is described. In one example, the de-interleaving is divided into two memory transfer stages, the first from an on-chip memory to a DRAM and the second from the DRAM to an on-chip memory. Each stage operates on part of a row-column interleaved block of data and re-orders the data items, such that the output of the second stage comprises de-interleaved data. In the first stage, data items are read from the on-chip memory according to a non-linear sequence of memory read addresses and written to the DRAM. In the second stage, data items are read from the DRAM according to bursts of linear address sequences which make efficient use of the DRAM interface and written back to on-chip memory according to a non-linear sequence of memory write addresses.
    Type: Application
    Filed: November 18, 2021
    Publication date: March 10, 2022
    Inventors: Paul Murrin, Adrian J. Anderson, Mohammed El-Hajjar
  • Patent number: 11210217
    Abstract: Tile based interleaving and de-interleaving of row-column interleaved data is described. In one example, the de-interleaving is divided into two memory transfer stages, the first from an on-chip memory to a DRAM and the second from the DRAM to an on-chip memory. Each stage operates on part of a row-column interleaved block of data and re-orders the data items, such that the output of the second stage comprises de-interleaved data. In the first stage, data items are read from the on-chip memory according to a non-linear sequence of memory read addresses and written to the DRAM. In the second stage, data items are read from the DRAM according to bursts of linear address sequences which make efficient use of the DRAM interface and written back to on-chip memory according to a non-linear sequence of memory write addresses.
    Type: Grant
    Filed: April 10, 2020
    Date of Patent: December 28, 2021
    Assignee: Imagination Technologies Limited
    Inventors: Paul Murrin, Adrian J. Anderson, Mohammed El-Hajjar
  • Patent number: 11184110
    Abstract: Channel state information (CSI) scaling modules for use in a demodulator configured to demodulate a signal received over a transmission channel, the demodulator comprising a soft decision error corrector (e.g. LDPC decoder) configured to decode data carried on data symbols of the received signal based on CSI values. The CSI scaling module is configured to monitor the performance of the soft decision error corrector and in response to determining the performance of the soft decision error corrector is below a predetermined level, dynamically select a new CSI scaling factor based on the performance of the soft decision error corrector.
    Type: Grant
    Filed: November 2, 2020
    Date of Patent: November 23, 2021
    Assignee: Imagination Technologies Limited
    Inventors: Filipe Carvalho, Paul Murrin
  • Patent number: 11044128
    Abstract: A gaussian frequency shift keying (GFSK) detector comprising a multi-symbol detector; at least three Viterbi decoders, and a timing adjustment module. The multi-symbol detector receives a series of samples representing a received GFSK modulated signal which comprises at least three samples per symbol; and generates, for each set of samples representing an N-symbol sequence of the GFSK modulated signal, at least three sets of soft decisions values, each set of soft decision values indicating the probability that the N-symbol sequence of samples is each possible N-symbol pattern based on a different one of the at least three samples of a symbol being a centre sample of the symbol. Each Viterbi decoder generates, for each N-symbol sequence, a path metric for each possible N-symbol pattern from a different set of soft decision values according to a Viterbi decoding algorithm.
    Type: Grant
    Filed: July 6, 2020
    Date of Patent: June 22, 2021
    Assignee: Imagination Technologies Limited
    Inventors: Paul Murrin, Adrian John Anderson
  • Publication number: 20210050942
    Abstract: Channel state information (CSI) scaling modules for use in a demodulator configured to demodulate a signal received over a transmission channel, the demodulator comprising a soft decision error corrector (e.g. LDPC decoder) configured to decode data carried on data symbols of the received signal based on CSI values. The CSI scaling module is configured to monitor the performance of the soft decision error corrector and in response to determining the performance of the soft decision error corrector is below a predetermined level, dynamically select a new CSI scaling factor based on the performance of the soft decision error corrector.
    Type: Application
    Filed: November 2, 2020
    Publication date: February 18, 2021
    Inventors: Filipe Carvalho, Paul Murrin
  • Patent number: 10862624
    Abstract: Channel state information (CSI) scaling modules for use in a demodulator configured to demodulate a signal received over a transmission channel, the demodulator comprising a soft decision error corrector (e.g. LDPC decoder) configured to decode data carried on data symbols of the received signal based on CSI values. The CSI scaling module is configured to monitor the performance of the soft decision error corrector and in response to determining the performance of the soft decision error corrector is below a predetermined level, dynamically select a new CSI scaling factor based on the performance of the soft decision error corrector.
    Type: Grant
    Filed: June 29, 2019
    Date of Patent: December 8, 2020
    Assignee: Imagination Technologies Limited
    Inventors: Filipe Carvalho, Paul Murrin
  • Publication number: 20200336346
    Abstract: A gaussian frequency shift keying (GFSK) detector comprising a multi-symbol detector; at least three Viterbi decoders, and a timing adjustment module. The multi-symbol detector receives a series of samples representing a received GFSK modulated signal which comprises at least three samples per symbol; and generates, for each set of samples representing an N-symbol sequence of the GFSK modulated signal, at least three sets of soft decisions values, each set of soft decision values indicating the probability that the N-symbol sequence of samples is each possible N-symbol pattern based on a different one of the at least three samples of a symbol being a centre sample of the symbol. Each Viterbi decoder generates, for each N-symbol sequence, a path metric for each possible N-symbol pattern from a different set of soft decision values according to a Viterbi decoding algorithm.
    Type: Application
    Filed: July 6, 2020
    Publication date: October 22, 2020
    Inventors: Paul Murrin, Adrian John Anderson
  • Patent number: 10756935
    Abstract: A Gaussian frequency shift keying (GFSK) detector for decoding a GFSK signal. The detector includes: a multi-symbol detector and a Viterbi decoder. The multi-symbol detector is configured to: receive a series of samples representing a received GFSK modulated signal; and generate, for each set of samples representing an N-symbol sequence of the GFSK modulated signal, a plurality of soft decision values that indicate the probability that the N-symbol sequence is each possible N-symbol pattern, wherein N is an integer greater than or equal to two. The Viterbi decoder is configured to estimate each N-symbol sequence using a Viterbi decoding algorithm wherein the soft decision values for the N-symbol sequence are used as branch metrics in the Viterbi decoding algorithm.
    Type: Grant
    Filed: August 22, 2019
    Date of Patent: August 25, 2020
    Assignee: Imagination Technologies Limited
    Inventors: Paul Murrin, Adrian John Anderson
  • Patent number: 10742460
    Abstract: A gaussian frequency shift keying (GFSK) detector comprising a multi-symbol detector; at least three Viterbi decoders, and a timing adjustment module. The multi-symbol detector receives a series of samples representing a received GFSK modulated signal which comprises at least three samples per symbol; and generates, for each set of samples representing an N-symbol sequence of the GFSK modulated signal, at least three sets of soft decisions values, each set of soft decision values indicating the probability that the N-symbol sequence of samples is each possible N-symbol pattern based on a different one of the at least three samples of a symbol being a centre sample of the symbol. Each Viterbi decoder generates, for each N-symbol sequence, a path metric for each possible N-symbol pattern from a different set of soft decision values according to a Viterbi decoding algorithm.
    Type: Grant
    Filed: August 22, 2019
    Date of Patent: August 11, 2020
    Assignee: Imagination Technologies Limited
    Inventors: Paul Murrin, Adrian John Anderson
  • Publication number: 20200242029
    Abstract: Tile based interleaving and de-interleaving of row-column interleaved data is described. In one example, the de-interleaving is divided into two memory transfer stages, the first from an on-chip memory to a DRAM and the second from the DRAM to an on-chip memory. Each stage operates on part of a row-column interleaved block of data and re-orders the data items, such that the output of the second stage comprises de-interleaved data. In the first stage, data items are read from the on-chip memory according to a non-linear sequence of memory read addresses and written to the DRAM. In the second stage, data items are read from the DRAM according to bursts of linear address sequences which make efficient use of the DRAM interface and written back to on-chip memory according to a non-linear sequence of memory write addresses.
    Type: Application
    Filed: April 10, 2020
    Publication date: July 30, 2020
    Inventors: Paul Murrin, Adrian J. Anderson, Mohammed El-Hajjar
  • Patent number: 10657050
    Abstract: Tile based interleaving and de-interleaving of row-column interleaved data is described. In one example, the de-interleaving is divided into two memory transfer stages, the first from an on-chip memory to a DRAM and the second from the DRAM to an on-chip memory. Each stage operates on part of a row-column interleaved block of data and re-orders the data items, such that the output of the second stage comprises de-interleaved data. In the first stage, data items are read from the on-chip memory according to a non-linear sequence of memory read addresses and written to the DRAM. In the second stage, data items are read from the DRAM according to bursts of linear address sequences which make efficient use of the DRAM interface and written back to on-chip memory according to a non-linear sequence of memory write addresses.
    Type: Grant
    Filed: April 11, 2019
    Date of Patent: May 19, 2020
    Assignee: Imagination Technologies Limited
    Inventors: Paul Murrin, Adrian J. Anderson, Mohammed El-Hajjar
  • Publication number: 20200067742
    Abstract: A Gaussian frequency shift keying (GFSK) detector for decoding a GFSK signal. The detector includes: a multi-symbol detector and a Viterbi decoder. The multi-symbol detector is configured to: receive a series of samples representing a received GFSK modulated signal; and generate, for each set of samples representing an N-symbol sequence of the GFSK modulated signal, a plurality of soft decision values that indicate the probability that the N-symbol sequence is each possible N-symbol pattern, wherein N is an integer greater than or equal to two. The Viterbi decoder is configured to estimate each N-symbol sequence using a Viterbi decoding algorithm wherein the soft decision values for the N-symbol sequence are used as branch metrics in the Viterbi decoding algorithm.
    Type: Application
    Filed: August 22, 2019
    Publication date: February 27, 2020
    Inventors: Paul Murrin, Adrian John Anderson
  • Publication number: 20200067741
    Abstract: A gaussian frequency shift keying (GFSK) detector comprising a multi-symbol detector; at least three Viterbi decoders, and a timing adjustment module. The multi-symbol detector receives a series of samples representing a received GFSK modulated signal which comprises at least three samples per symbol; and generates, for each set of samples representing an N-symbol sequence of the GFSK modulated signal, at least three sets of soft decisions values, each set of soft decision values indicating the probability that the N-symbol sequence of samples is each possible N-symbol pattern based on a different one of the at least three samples of a symbol being a centre sample of the symbol. Each Viterbi decoder generates, for each N-symbol sequence, a path metric for each possible N-symbol pattern from a different set of soft decision values according to a Viterbi decoding algorithm.
    Type: Application
    Filed: August 22, 2019
    Publication date: February 27, 2020
    Inventors: Paul Murrin, Adrian John Anderson
  • Publication number: 20200007273
    Abstract: Channel state information (CSI) scaling modules for use in a demodulator configured to demodulate a signal received over a transmission channel, the demodulator comprising a soft decision error corrector (e.g. LDPC decoder) configured to decode data carried on data symbols of the received signal based on CSI values. The CSI scaling module is configured to monitor the performance of the soft decision error corrector and in response to determining the performance of the soft decision error corrector is below a predetermined level, dynamically select a new CSI scaling factor based on the performance of the soft decision error corrector.
    Type: Application
    Filed: June 29, 2019
    Publication date: January 2, 2020
    Inventors: Filipe Carvalho, Paul Murrin
  • Patent number: 10387155
    Abstract: A processing system includes a program processor for executing a program, and a dedicated processor for executing operations of a particular type (e.g. vector processing operations). The program processor uses an interfacing module and a group of two or more register banks to offload operations of the particular type to the dedicated processor for execution thereon. While the dedicated processor is accessing one register bank for executing a current operation, the interfacing module can concurrently load data for a subsequent operation into a different one of the register banks. The use of multiple register banks allows the dedicated processor to spend a greater proportion of its time executing operations.
    Type: Grant
    Filed: March 24, 2016
    Date of Patent: August 20, 2019
    Assignee: Imagination Technologies Limited
    Inventors: Paul Murrin, Gareth Davies, Adrian J. Anderson
  • Publication number: 20190236006
    Abstract: Tile based interleaving and de-interleaving of row-column interleaved data is described. In one example, the de-interleaving is divided into two memory transfer stages, the first from an on-chip memory to a DRAM and the second from the DRAM to an on-chip memory. Each stage operates on part of a row-column interleaved block of data and re-orders the data items, such that the output of the second stage comprises de-interleaved data. In the first stage, data items are read from the on-chip memory according to a non-linear sequence of memory read addresses and written to the DRAM. In the second stage, data items are read from the DRAM according to bursts of linear address sequences which make efficient use of the DRAM interface and written back to on-chip memory according to a non-linear sequence of memory write addresses.
    Type: Application
    Filed: April 11, 2019
    Publication date: August 1, 2019
    Inventors: Paul Murrin, Adrian J. Anderson, Mohammed El-Hajjar
  • Patent number: 10296456
    Abstract: Tile based interleaving and de-interleaving of row-column interleaved data is described. In one example, the de-interleaving is divided into two memory transfer stages, the first from an on-chip memory to a DRAM and the second from the DRAM to an on-chip memory. Each stage operates on part of a row-column interleaved block of data and re-orders the data items, such that the output of the second stage comprises de-interleaved data. In the first stage, data items are read from the on-chip memory according to a non-linear sequence of memory read addresses and written to the DRAM. In the second stage, data items are read from the DRAM according to bursts of linear address sequences which make efficient use of the DRAM interface and written back to on-chip memory according to a non-linear sequence of memory write addresses.
    Type: Grant
    Filed: March 12, 2013
    Date of Patent: May 21, 2019
    Assignee: Imagination Technologies Limited
    Inventors: Paul Murrin, Adrian J. Anderson, Mohammed El-Hajjar
  • Patent number: 10255161
    Abstract: A logging unit is used to log entries for events in a computer system. Each entry includes an n-bit timestamp field and a payload. The payload includes information about the event and the timestamp field includes the n least significant bits of an N-bit timestamp for the event, where N>n. If the n least significant bits of the timestamp have wrapped compared to the corresponding n bits of the timestamp of the preceding entry then a timing entry is logged which includes other bits of the timestamp. Therefore, an N-bit timestamp can be determined for an event, but only the n least significant bits of the timestamp are stored in the timestamp field of an entry for the event. Therefore, the time flow of events in the store is better maintained (by having a larger timestamp) without increasing the number of bits (n) in the timestamp field of each entry.
    Type: Grant
    Filed: March 24, 2016
    Date of Patent: April 9, 2019
    Assignee: Imagination Technologies Limited
    Inventors: Paul Murrin, Gareth Davies
  • Patent number: 10142154
    Abstract: Methods and OFDM receivers for decoding an OFDM signal include estimating a channel impulse response from a pilot-dense symbol of the OFDM signal for each of a plurality of potential FFT window positions; determining a noise floor of each of the channel impulse responses; selecting the potential window position corresponding to the channel impulse response with the lowest noise floor as an optimum FFT window position; and decoding symbols of the OFDM signal using the optimum FFT window position.
    Type: Grant
    Filed: March 14, 2018
    Date of Patent: November 27, 2018
    Assignee: Imagination Technologies Limited
    Inventors: Mohammed Alloulah, Paul Murrin, Alamo Spaargaren