Patents by Inventor Paul N. Barnes

Paul N. Barnes has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10401393
    Abstract: A method of measuring superconducting critical current in persistent mode using superconducting closed loops which allow the persistent current to flow without any joints. This persistent critical current is different than traditional resistive critical current that is the upper limit of the superconducting current carrying capacity, and provides the information about the range of critical current in persistent mode that is more close to applications in MRI, SMES, and Maglev operations. The measurement can be used as a quality control method in the manufacturing process and a piece of crucial information to magnet manufacturers for the design and fabrication of magnet. The superconducting materials include the second generation superconducting wires (coated conductors) based on Rare Earth (RE) Barium Copper Oxide superconducting material (REBa2Cu3O6+x, REBCO), or any other type of superconducting wires that can be manufactured in the form of tape.
    Type: Grant
    Filed: June 28, 2017
    Date of Patent: September 3, 2019
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventors: George A. Levin, Paul N. Barnes, Charles C. Rong
  • Publication number: 20170370970
    Abstract: A method of measuring superconducting critical current in persistent mode using superconducting closed loops which allow the persistent current to flow without any joints. This persistent critical current is different than traditional resistive critical current that is the upper limit of the superconducting current carrying capacity, and provides the information about the range of critical current in persistent mode that is more close to applications in MRI, SMES, and Maglev operations. The measurement can be used as a quality control method in the manufacturing process and a piece of crucial information to magnet manufacturers for the design and fabrication of magnet. The superconducting materials include the second generation superconducting wires (coated conductors) based on Rare Earth (RE) Barium Copper Oxide superconducting material (REBa2Cu3O6+x, REBCO), or any other type of superconducting wires that can be manufactured in the form of tape.
    Type: Application
    Filed: June 28, 2017
    Publication date: December 28, 2017
    Inventors: George A. Levin, Paul N. Barnes, Charles C. Rong
  • Publication number: 20170040095
    Abstract: Provided are devices for inducing a current in a closed loop superconducting material including a magnetic field source housed within a coil former substantially coaxial with the magnetic field source, and a base optionally in physical contact with a support tube. A closed loop superconducting material is held in a loop position by the coil former and the base such that current passing through the magnetic field source will produce a current in the superconducting material by induction. By a process of modified current sweep reversal, the rate of relaxation may be reduced in the superconducting material relative to the absence of a reversal.
    Type: Application
    Filed: August 6, 2015
    Publication date: February 9, 2017
    Inventors: George A. Levin, Paul N. Barnes, Charles C. Rong
  • Patent number: 8623788
    Abstract: The present invention provides a method of making a high temperature superconductor having a doped, nanoparticulate pinning structure. The method includes providing a nanoparticulate pinning material, providing a cuprate material, doping the nanoparticulate pinning material with a dopant to form a doped nanoparticulate material, depositing a layer of the cuprate material on a substrate, and depositing a layer of the doped nanoparticulate material on the layer of cuprate material. The invention also provides a high temperature superconductor (HTS) having a doped, nanoparticulate pinning structure including a plurality of layers of a cuprate material and a plurality of layers of a doped nanoparticulate pinning material. At least one layer of the doped nanoparticulate pinning material is stacked between two layers of the cuprate material.
    Type: Grant
    Filed: January 11, 2013
    Date of Patent: January 7, 2014
    Assignee: The United States of America as represented by the Secretary of the Air Force
    Inventors: Paul N. Barnes, Timothy J. Haugan
  • Patent number: 8383552
    Abstract: The present invention provides a method of making a high temperature superconductor having a doped, nanoparticulate pinning structure. The method includes providing a nanoparticulate pinning material, providing a cuprate material, doping the nanoparticulate pinning material with a dopant to form a doped nanoparticulate material, depositing a layer of the cuprate material on a substrate, and depositing a layer of the doped nanoparticulate material on the layer of cuprate material. The invention also provides a high temperature superconductor (HTS) having a doped, nanoparticulate pinning structure including a plurality of layers of a cuprate material and a plurality of layers of a doped nanoparticulate pinning material. At least one layer of the doped nanoparticulate pinning material is stacked between two layers of the cuprate material.
    Type: Grant
    Filed: January 31, 2008
    Date of Patent: February 26, 2013
    Assignee: The United States of America as Represented by the Secretary of the Air Force
    Inventors: Paul N. Barnes, Timothy J. Haugan
  • Patent number: 7871663
    Abstract: A method for enhancing the flux pinning of a YBCO superconductor by substituting minute quantities of rare earth elements (La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu) or other deleterious elements (Sc, etc.) for Y in YBCO thin films is described. The method of the present invention enables enhanced flux pinning of the material while not significantly increasing the cost of the HIS material and can be used in all HTS deposition methods since it is not process dependent.
    Type: Grant
    Filed: October 3, 2006
    Date of Patent: January 18, 2011
    Assignee: The United States of America as represented by the Secretary of the Air Force
    Inventors: Paul N. Barnes, Joseph W. Kell, Timothy J. Haugan
  • Patent number: 7756557
    Abstract: An AC-tolerant high temperature superconductor tape with transposed filaments having two layers of high temperature superconducting material with striations and corresponding filaments and an insulating layer positioned therebetween.
    Type: Grant
    Filed: November 30, 2006
    Date of Patent: July 13, 2010
    Assignee: The United States of America as represented by the Secretary of the Air Force
    Inventors: Paul N. Barnes, Milan Polak, Chakrapani Varanasi
  • Patent number: 7687436
    Abstract: Nanometer-sized non-superconducting particulates in superconductive REBCO films, where RE is a rare earth metal, for flux pinning enhancement and a method of forming are disclosed. A target with a second phase material sector portion and a superconductive material portion is used in a pulse laser deposition process to form films on substrates according to the present invention. The films consist of 10-20 nm-sized precipitates. In a 0.5 ?m thick film, a transport critical current density (Jc)>3 MA/cm2 at 77K in self-field was measured. In one embodiment, magnetization Jc at 77 K and 65K showed significant improvements in a composite YBCO films with fine precipitates produced according to the present invention as compared to non-doped (standard) YBCO films (>10 times increase at 9 T, 65 K).
    Type: Grant
    Filed: December 1, 2006
    Date of Patent: March 30, 2010
    Assignee: University of Dayton
    Inventors: Chakrapani Varanasi, Paul N. Barnes
  • Patent number: 7566684
    Abstract: A superconductor coating inclusive, tape-like electrical conductor and windings using such conductor for magnets and electrical machines, etc. The described windings are suited for inclusion of successor superconductor materials such as yttrium barium copper oxide wherein magnetic flux related losses can potentially be excessive and preclude successful machine operation. Winding orientation and configuration of the conductor in an alternating current machine for lower losses are disclosed along with methods and apparatus for achieving the desired windings. Windings intended for differing locations within a machine of this type are made possible by the invention. Equations relating to magnetic losses incurred in such windings are also disclosed.
    Type: Grant
    Filed: August 24, 2006
    Date of Patent: July 28, 2009
    Assignee: The United States of America as represented by the Secretary of the Air Force
    Inventors: George A. Levin, Paul N. Barnes
  • Patent number: 6830776
    Abstract: A method of manufacturing a high temperature superconductor is disclosed. The method includes depositing, by pulsed laser deposition, alternating layers of YBa2Cu3O7-x (Y123) and Y2BaCuO5-y (Y211). The Y211 layers are characterized by a multiplicity of nanosized globular inclusions, effectively enhancing flux pinning and thus increasing current transport.
    Type: Grant
    Filed: January 31, 2003
    Date of Patent: December 14, 2004
    Assignee: The United States of America as represented by the Secretary of the Air Force
    Inventors: Paul N. Barnes, Timothy J. Haugan
  • Patent number: 6676811
    Abstract: A method of depositing nanoparticles for flux pinning into a superconducting material is described. According to the method of the present invention, a target made of superconducting material and a substrate are placed in the deposition chamber of a pulsed laser deposition apparatus. A first, moderate vacuum level is established in the chamber and the target is irradiated with light from a pulsed, high energy laser. By virtue of the moderate vacuum level, the material ejected from the target is slowed sufficiently to agglomerate into nanoparticles having the same composition as the target material. These nanoparticles are deposited upon the substrate. A uniform layer of superconducting material is deposited on the substrate by evacuating the deposition chamber to a second, high vacuum level and performing the pulsed laser deposition process again. The nanoparticles thus deposited within the superconducting material act as a flux pinning mechanism.
    Type: Grant
    Filed: July 17, 2002
    Date of Patent: January 13, 2004
    Assignee: The United States of America as represented by the Secretary of the Air Force
    Inventors: Paul N. Barnes, P. Terry Murray