Patents by Inventor Paul N. Winberg

Paul N. Winberg has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7968896
    Abstract: Embodiments of the present invention provide separate optical devices operable to couple to a separate LED, the separate optical device comprising an entrance surface to receive light from a separate LED when the separate optical device is coupled to the separate LED, an exit surface opposite from and a distance from the entrance surface and a set of sidewalls. The exit surface can have at least a minimum area necessary to conserve brightness for a desired half-angle of light projected from the separate optical device. Furthermore, each sidewall is positioned and shaped so that rays having a straight transmission path from the entrance surface to that sidewall reflect to the exit surface with an angle of incidence at the exit surface at less than or equal to a critical angle at the exit surface.
    Type: Grant
    Filed: May 26, 2010
    Date of Patent: June 28, 2011
    Assignee: Illumitex, Inc.
    Inventors: Dung T. Duong, Paul N. Winberg, Matthew R. Thomas
  • Publication number: 20110044022
    Abstract: Embodiments disclosed herein provide optical systems utilizing photon conversion materials in conjunction with a light source and an LED. An LED can be positioned in a cavity defined by a base and one or more sidewalls. Phosphors can be disposed on the entrance face of a lens between the entrance face to the lens body and the LED so that light emitted from the LED will be incident on the phosphor and down converted before entering the lens body through the entrance face. The lens can positioned so that the phosphors are separated from the LED by a gap.
    Type: Application
    Filed: December 23, 2009
    Publication date: February 24, 2011
    Applicant: Illumitex, Inc.
    Inventors: Hyunchul Ko, Randall E. Johnson, Dung T. Duong, Paul N. Winberg
  • Publication number: 20110026896
    Abstract: An optical fiber holder assembly for holding an optical fiber having any one of several different fiber constructions comprises a base and a fiber clamping mechanism. The clamping mechanism includes a clamping portion configured to clamp the optical fiber, the clamping portion including a first clamping plate hingedly coupled to a portion of the base. A first fiber entrance guide is formed in an entrance end of the fiber clamping mechanism to receive and guide the optical fiber to a first fiber channel formed in the base. A second fiber entrance guide is formed in the entrance end of the fiber clamping mechanism to receive and guide the optical fiber to a second fiber channel formed in the base. The first clamping portion includes rust and second compliant gripping pads, the first gripping pad disposed on the base and the second gripping pad disposed in the first clamping plate such that the gripping pads overlap each other when the first clamping plate is placed in a closed position.
    Type: Application
    Filed: July 29, 2008
    Publication date: February 3, 2011
    Inventors: Paul N. Winberg, Donald K. Larson
  • Publication number: 20100284167
    Abstract: Embodiments of the present invention provide separate optical devices operable to couple to a separate LED, the separate optical device comprising an entrance surface to receive light from a separate LED when the separate optical device is coupled to the separate LED, an exit surface opposite from and a distance from the entrance surface and a set of sidewalls. The exit surface can have at least a minimum area necessary to conserve brightness for a desired half-angle of light projected from the separate optical device. Furthermore, each sidewall is positioned and shaped so that rays having a straight transmission path from the entrance surface to that sidewall reflect to the exit surface with an angle of incidence at the exit surface at less than or equal to a critical angle at the exit surface.
    Type: Application
    Filed: May 26, 2010
    Publication date: November 11, 2010
    Inventors: Dung T. Duong, Paul N. Winberg, Matthew R. Thomas
  • Patent number: 7829358
    Abstract: Embodiments of an LED disclosed has an emitter layer shaped to a controlled depth or height relative to a substrate of the LED to maximize the light output of the LED and to achieve a desired intensity distribution. In some embodiments, the exit face of the LED may be selected to conserve radiance. In some embodiments, shaping the entire LED, including the substrate and sidewalls, or shaping the substrate alone can extract 100% or approximately 100% of the light generated at the emitter layers from the emitter layers. In some embodiments, the total efficiency is at least 90% or above. In some embodiments, the emitter layer can be shaped by etching, mechanical shaping, or a combination of various shaping methods. In some embodiments, only a portion of the emitter layer is shaped to form the tiny emitters. The unshaped portion forms a continuous electrical connection for the LED.
    Type: Grant
    Filed: February 6, 2009
    Date of Patent: November 9, 2010
    Assignee: Illumitex, Inc.
    Inventors: Dung T. Duong, Paul N. Winberg, Matthew R. Thomas, Elliot M. Pickering, Muhammad Khizar
  • Publication number: 20100270560
    Abstract: Embodiments of an LED disclosed has an emitter layer shaped to a controlled depth or height relative to a substrate of the LED to maximize the light output of the LED and to achieve a desired intensity distribution. In some embodiments, the exit face of the LED may be selected to conserve radiance. In some embodiments, shaping the entire LED, including the substrate and sidewalls, or shaping the substrate alone can extract 100% or approximately 100% of the light generated at the emitter layers from the emitter layers. In some embodiments, the total efficiency is at least 90% or above. In some embodiments, the emitter layer can be shaped by etching, mechanical shaping, or a combination of various shaping methods. In some embodiments, only a portion of the emitter layer is shaped to form the tiny emitters. The unshaped portion forms a continuous electrical connection for the LED.
    Type: Application
    Filed: June 7, 2010
    Publication date: October 28, 2010
    Inventors: Dung T. Duong, Paul N. Winberg, Matthew R. Thomas, Elliot M. Pickering, Muhammad Khizar
  • Patent number: 7789531
    Abstract: Embodiments provide an LED comprising a quantum well region operable to generate light and a substrate having an interface with the quantum well region, wherein light generated by the quantum well region traverses the interface to enter the substrate and exit the LED through an exit face of the substrate. The exit face may be opposite from and a distance from the interface, with some portion or all of this LED being shaped to optimize the light extraction efficiency of the device. The exit face can have at least 70% of a minimum area necessary to conserve brightness for a desired half-angle of light. Sidewalls of the LED may be positioned and shaped so that rays incident on a sidewall reflect to the exit face with an angle of incidence at the exit face at less than or equal to a critical angle at the exit face.
    Type: Grant
    Filed: October 1, 2007
    Date of Patent: September 7, 2010
    Assignee: Illumitex, Inc.
    Inventors: Dung T. Duong, Paul N. Winberg, Matthew R. Thomas
  • Publication number: 20100201611
    Abstract: Embodiments described herein provide LED displays. One embodiment of an LED display can comprise an array of white light units with each white light unit comprising a set of color light sources. The display can further include a controller electrically coupled to the white light units, the controller configured to control the white light units to alter the color of light produced by the white light units to produce images on the display. Another embodiment of a display can comprise an array of red light sources, green light sources and blue light sources configured to provide light to a color combiner in a desired half angle and a color combiner configured to combine light into a common plane for transmission to the projection optic.
    Type: Application
    Filed: December 22, 2009
    Publication date: August 12, 2010
    Applicant: Illumitex, Inc.
    Inventors: Dung T. Duong, Paul N. Winberg
  • Patent number: 7772604
    Abstract: Embodiments of the present invention provide separate optical devices operable to couple to a separate LED, the separate optical device comprising an entrance surface to receive light from a separate LED when the separate optical device is coupled to the separate LED, an exit surface opposite from and a distance from the entrance surface and a set of sidewalls. The exit surface has at least a minimum area necessary to conserve brightness for a desired half-angle of light projected from the separate optical device. Furthermore, each sidewall is positioned and shaped so that at least a majority of rays having a straight transmission path from the entrance surface to that sidewall reflect to the exit surface with an angle of incidence at the exit surface at less than or equal to a critical angle at the exit surface.
    Type: Grant
    Filed: January 3, 2007
    Date of Patent: August 10, 2010
    Assignee: Illumitex
    Inventors: Dung T. Duong, Paul N. Winberg, Matthew R. Thomas
  • Publication number: 20100148193
    Abstract: Embodiments disclosed herein provide packaged LED devices in which the majority of the emitted light comes out the top of each LED chip with very little side emissions. Because light only comes out from the top, phosphor deposition and color temperature control can be significantly simplified. A package LED may include a housing positioned on a supporting submount, sized and dimensioned to accommodate a single LED chip or an array of LED chips. The LED chip(s) may be attached to the submount utilizing the Gold-to-Gold Interconnect (GGI) process or solder-based approaches. In some embodiments, phosphor may be deposited on top of the LED chip(s) or sandwiched between glass plates on top of the LED chip(s). The phosphor layer may be inside or on top of the housing and be secured to the housing utilizing an adhesive. The housing may be adhered to the submount utilizing a thermal epoxy.
    Type: Application
    Filed: December 11, 2009
    Publication date: June 17, 2010
    Applicant: Illumitex, Inc.
    Inventors: Dung T. Duong, Paul N. Winberg, Oscar Vaz
  • Publication number: 20100098381
    Abstract: An optical fiber connector comprises an outer housing configured to mate with a receptacle and a collar body disposed in the outer housing. The collar body receives and secures a ferrule in a first portion of the collar body. The ferrule includes a central bore that defines an axis. The ferrule further includes a fiber stub disposed in a portion of the central bore, the fiber stub comprising a first optical fiber having a first end proximate to an end face of the ferrule and a prepared second end terminating within the ferrule. The collar body further includes a second portion that includes a housing portion to house a gripping device that grips a second optical fiber.
    Type: Application
    Filed: February 7, 2008
    Publication date: April 22, 2010
    Inventors: Donald K. Larson, Sidney J. Berglund, Paul N. Winberg, James R. Bylander, Takaya Yamauchi, Tomoyasu Oike, Yukino Miyoshi
  • Publication number: 20090289263
    Abstract: Embodiments of an LED disclosed has an emitter layer shaped to a controlled depth or height relative to a substrate of the LED to maximize the light output of the LED and to achieve a desired intensity distribution. In some embodiments, the exit face of the LED may be selected to conserve radiance. In some embodiments, shaping the entire LED, including the substrate and sidewalls, or shaping the substrate alone can extract 100% or approximately 100% of the light generated at the emitter layers from the emitter layers. In some embodiments, the total efficiency is at least 90% or above. In some embodiments, the emitter layer can be shaped by etching, mechanical shaping, or a combination of various shaping methods. In some embodiments, only a portion of the emitter layer is shaped to form the tiny emitters. The unshaped portion forms a continuous electrical connection for the LED.
    Type: Application
    Filed: February 6, 2009
    Publication date: November 26, 2009
    Applicant: Illumitex, Inc.
    Inventors: Dung T. Duong, Paul N. Winberg, Matthew R. Thomas, Elliot M. Pickering, Muhammad Khizar
  • Publication number: 20090275157
    Abstract: Embodiments described herein provide methods for manufacturing an optical device having shaped sidewalls. A desired substrate shape corresponding to an LED or other optical device can be determined. The optical device can have a substrate comprising an exit face and sidewalls positioned and shaped to reflect light to the exit face to allow light to escape the exit face. A substrate material can be shaped based on the desired substrate shape for one or more LEDs. Shaping can be done using a wire saw, etching, ultrasonic shaping or other technique.
    Type: Application
    Filed: June 26, 2009
    Publication date: November 5, 2009
    Applicant: Illumitex, Inc.
    Inventors: Paul N. Winberg, Dung T. Duong, Matthew R. Thomas, Elliot M. Pickering
  • Publication number: 20090275266
    Abstract: Embodiments described herein provide methods for manufacturing an optical device having shaped sidewalls. A substrate material can be shaped to form a substrate portion of an optical device comprising an exit face and sidewalls positioned and shaped to reflect light to the exit face to allow light to escape the exit face. The sidewalls can be polished to a desired degree of polish. Polishing can be done using a polishing tool, etching, particle jet polishing or other polishing method.
    Type: Application
    Filed: June 26, 2009
    Publication date: November 5, 2009
    Applicant: Illumitex, Inc.
    Inventors: Paul N. Winberg, Dung T. Duong, Matthew R. Thomas, Elliot M. Pickering, Hyunchul Ko
  • Publication number: 20090269014
    Abstract: An LC format optical connector for terminating an optical fiber includes a housing configured to mate with an LC receptacle, the housing including a shell, a first resilient latch disposed on a surface of the shell, and a backbone. The LC format connector also includes a collar body disposed in the housing and retained between the outer shell and the backbone, wherein the collar body includes a fiber stub disposed in a first portion of the collar body. The collar body further includes a mechanical splice disposed in a second portion of the collar body, the mechanical splice configured to splice the second end of the fiber stub to a second optical fiber. The LC format connector further includes a trigger coupled to an outer surface of the housing backbone, the trigger including a second latch that engages the first latch when acted upon by a pressing force. An optical connector with a single piece latch structure is also provided.
    Type: Application
    Filed: April 23, 2009
    Publication date: October 29, 2009
    Inventors: Paul N. Winberg, Donald K. Larson, Wesley A. Raider
  • Patent number: 7558459
    Abstract: A splice holder device includes a tray mountable in a telecommunications closure, the tray including a splice mounting mechanism configured to receive a splice device. The splice holder device also includes first and second fiber clamps disposed on the tray, wherein the first and second fiber clamps are each configured to releasably secure a buffered portion of an optical fiber. The tray can include a single splice device, such as a mechanical splice, mounted therein or can include a plurality of splice devices mounted therein. The splice holder device can be configured to be securedly mounted in a telecommunications enclosure.
    Type: Grant
    Filed: February 12, 2008
    Date of Patent: July 7, 2009
    Assignee: 3M Innovative Properties Company
    Inventors: James B. Carpenter, Douglas P. Hills, Chansool Park, Donald K. Larson, Paul N. Winberg
  • Publication number: 20080212929
    Abstract: A splice holder device includes a tray mountable in a telecommunications closure, the tray including a splice mounting mechanism configured to receive a splice device. The splice holder device also includes first and second fiber clamps disposed on the tray, wherein the first and second fiber clamps are each configured to releasably secure a buffered portion of an optical fiber. The tray can include a single splice device, such as a mechanical splice, mounted therein or can include a plurality of splice devices mounted therein. The splice holder device can be configured to be securedly mounted in a telecommunications enclosure.
    Type: Application
    Filed: February 12, 2008
    Publication date: September 4, 2008
    Inventors: James B. Carpenter, Douglas P. Hills, Chansool Park, Donald K. Larson, Paul N. Winberg
  • Patent number: 7369738
    Abstract: An optical connector for terminating an optical fiber comprises a housing configured to mate with a receptacle and a collar body disposed in the housing. The collar body includes a fiber stub disposed in a first portion of the collar body, the fiber stub including a first optical fiber mounted in a ferrule and having a first end proximate to an end face of the ferrule and a second end. The collar body also includes a mechanical splice disposed in a second portion of the collar body, the mechanical splice configured to splice the second end of the fiber stub to a second optical fiber. The collar body also includes a buffer clamp configured within a third portion of the collar body, the buffer clamp configured to clamp at least a portion of a buffer cladding of the second fiber upon actuation. A fiber distribution unit is also provided.
    Type: Grant
    Filed: October 23, 2006
    Date of Patent: May 6, 2008
    Assignee: 3M Innovative Properties Company
    Inventors: Donald K. Larson, Paul N. Winberg, Wesley A. Raider, Chansool Park, Wai-Fung Mak, James B. Carpenter, Frank J. Glatzl
  • Publication number: 20080081531
    Abstract: Embodiments provide an LED comprising a quantum well region operable to generate light and a substrate having an interface with the quantum well region, wherein light generated by the quantum well region traverses the interface to enter the substrate and exit the LED through an exit face of the substrate. The exit face may be opposite from and a distance from the interface, with some portion or all of this LED being shaped to optimize the light extraction efficiency of the device. The exit face can have at least 70% of a minimum area necessary to conserve brightness for a desired half-angle of light. Sidewalls of the LED may be positioned and shaped so that rays incident on a sidewall reflect to the exit face with an angle of incidence at the exit face at less than or equal to a critical angle at the exit face.
    Type: Application
    Filed: October 1, 2007
    Publication date: April 3, 2008
    Inventors: Dung T. Duong, Paul N. Winberg, Matthew R. Thomas, Elliot M. Pickering
  • Patent number: 7333709
    Abstract: A splice holder device includes a tray mountable in a telecommunications closure, the tray including a splice mounting mechanism configured to receive a splice device. The splice holder device also includes first and second fiber clamps disposed on the tray, wherein the first and second fiber clamps are each configured to releasably secure a buffered portion of an optical fiber. The tray can include a single splice device, such as a mechanical splice, mounted therein or can include a plurality of splice devices mounted therein. The splice holder device can be configured to be securedly mounted in a telecommunications enclosure.
    Type: Grant
    Filed: September 8, 2005
    Date of Patent: February 19, 2008
    Assignee: 3M Innovative Properties Company
    Inventors: James B. Carpenter, Douglas P. Hills, Chansool Park, Donald K. Larson, Paul N. Winberg