Patents by Inventor Paul Nathan Bennett

Paul Nathan Bennett has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240338414
    Abstract: This document relates to natural language processing using a framework such as a neural network. One example method involves obtaining a first document and a second document and propagating attention from the first document to the second document. The example method also involves producing contextualized semantic representations of individual words in the second document based at least on the propagating. The contextualized semantic representations can provide a basis for performing one or more natural language processing operations.
    Type: Application
    Filed: May 10, 2024
    Publication date: October 10, 2024
    Applicant: Microsoft Technology Licensing, LLC
    Inventors: Chenyan Xiong, Chen Zhao, Corbin Louis Rosset, Paul Nathan Bennett, Xia Song, Saurabh Kumar Tiwary
  • Patent number: 12099552
    Abstract: A computer-implemented technique is described herein for assisting a user in advancing a task objective. The technique uses a suggestion-generating system (SGS) to provide one or more suggestions to a user in response to at least a last-submitted query provided by the user. The SGS may correspond to a classification-type or generative-type neural network. The SGS uses a machine-trained model that is trained using a multi-task training framework based on plural groups of training examples, which, in turn, are produced using different respective example-generating methods. One such example-generating method constructs a training example from queries in a search session. It operates by identifying the task-related intent the queries, and then identifying at least one sequence of queries in the search session that exhibits a coherent task-related intent. A training example is constructed based on queries in such a sequence.
    Type: Grant
    Filed: November 7, 2023
    Date of Patent: September 24, 2024
    Assignee: Microsoft Technology Licensing, LLC
    Inventors: Corby Louis Rosset, Chenyan Xiong, Paul Nathan Bennett, Saurabh Kumar Tiwary, Daniel Fernando Campos, Xia Song, Nicholas Eric Craswell
  • Patent number: 12013902
    Abstract: This document relates to natural language processing using a framework such as a neural network. One example method involves obtaining a first document and a second document and propagating attention from the first document to the second document. The example method also involves producing contextualized semantic representations of individual words in the second document based at least on the propagating. The contextualized semantic representations can provide a basis for performing one or more natural language processing operations.
    Type: Grant
    Filed: July 18, 2022
    Date of Patent: June 18, 2024
    Assignee: Microsoft Technology Licensing, LLC
    Inventors: Chenyan Xiong, Chen Zhao, Corbin Louis Rosset, Paul Nathan Bennett, Xia Song, Saurabh Kumar Tiwary
  • Publication number: 20240070202
    Abstract: A computer-implemented technique is described herein for assisting a user in advancing a task objective. The technique uses a suggestion-generating system (SGS) to provide one or more suggestions to a user in response to at least a last-submitted query provided by the user. The SGS may correspond to a classification-type or generative-type neural network. The SGS uses a machine-trained model that is trained using a multi-task training framework based on plural groups of training examples, which, in turn, are produced using different respective example-generating methods. One such example-generating method constructs a training example from queries in a search session. It operates by identifying the task-related intent the queries, and then identifying at least one sequence of queries in the search session that exhibits a coherent task-related intent. A training example is constructed based on queries in such a sequence.
    Type: Application
    Filed: November 7, 2023
    Publication date: February 29, 2024
    Applicant: Microsoft Technology Licensing, LLC
    Inventors: Corby Louis ROSSET, Chenyan XIONG, Paul Nathan BENNETT, Saurabh Kumar TIWARY, Daniel Fernando CAMPOS, Xia SONG, Nicholas Eric CRASWELL
  • Patent number: 11853362
    Abstract: A computer-implemented technique is described herein for assisting a user in advancing a task objective. The technique uses a suggestion-generating system (SGS) to provide one or more suggestions to a user in response to at least a last-submitted query provided by the user. The SGS may correspond to a classification-type or generative-type neural network. The SGS uses a machine-trained model that is trained using a multi-task training framework based on plural groups of training examples, which, in turn, are produced using different respective example-generating methods. One such example-generating method constructs a training example from queries in a search session. It operates by identifying the task-related intent the queries, and then identifying at least one sequence of queries in the search session that exhibits a coherent task-related intent. A training example is constructed based on queries in such a sequence.
    Type: Grant
    Filed: April 16, 2020
    Date of Patent: December 26, 2023
    Assignee: Microsoft Technology Licensing, LLC
    Inventors: Corby Louis Rosset, Chenyan Xiong, Paul Nathan Bennett, Saurabh Kumar Tiwary, Daniel Fernando Campos, Xia Song, Nicholas Eric Craswell
  • Patent number: 11636394
    Abstract: The present concepts relate to a differentiable user-item co-clustering (“DUICC”) model for recommendation and co-clustering. Users' interaction with items (e.g., content) may be centered around information co-clusters—groups of items and users that exhibit common consumption behavior. The DUICC model may learn fine-grained co-cluster structures of items and users based on their interaction data. The DUICC model can then leverage the learned latent co-cluster structures to calculate preference stores of the items for a user. The top scoring items may be presented to the user as recommendations.
    Type: Grant
    Filed: June 25, 2020
    Date of Patent: April 25, 2023
    Assignee: Microsoft Technology Licensing, LLC
    Inventors: Longqi Yang, Tobias Benjamin Schnabel, Paul Nathan Bennett, Susan Theresa Dumais
  • Patent number: 11562199
    Abstract: Disclosed are techniques for extracting, identifying, and consuming imprecise temporal elements (“ITEs”). A user input may be received from a client device. A prediction may be generated of one or more time intervals to which the user input refers based upon an ITE model. The user input may be associated with the prediction, and provided to the client device.
    Type: Grant
    Filed: June 10, 2020
    Date of Patent: January 24, 2023
    Assignee: Microsoft Technology Licensing, LLC
    Inventors: Adam Fourney, Paul Nathan Bennett, Ryen White, Eric Horvitz, Xin Rong, David Graus
  • Publication number: 20220374479
    Abstract: This document relates to natural language processing using a framework such as a neural network. One example method involves obtaining a first document and a second document and propagating attention from the first document to the second document. The example method also involves producing contextualized semantic representations of individual words in the second document based at least on the propagating. The contextualized semantic representations can provide a basis for performing one or more natural language processing operations.
    Type: Application
    Filed: July 18, 2022
    Publication date: November 24, 2022
    Applicant: Microsoft Technology Licensing, LLC
    Inventors: Chenyan Xiong, Chen Zhao, Corbin Louis Rosset, Paul Nathan Bennett, Xia Song, Saurabh Kumar Tiwary
  • Patent number: 11423093
    Abstract: This document relates to natural language processing using a framework such as a neural network. One example method involves obtaining a first document and a second document and propagating attention from the first document to the second document. The example method also involves producing contextualized semantic representations of individual words in the second document based at least on the propagating. The contextualized semantic representations can provide a basis for performing one or more natural language processing operations.
    Type: Grant
    Filed: September 25, 2019
    Date of Patent: August 23, 2022
    Assignee: Microsoft Technology Licensing, LLC
    Inventors: Chenyan Xiong, Chen Zhao, Corbin Louis Rosset, Paul Nathan Bennett, Xia Song, Saurabh Kumar Tiwary
  • Publication number: 20210406761
    Abstract: The present concepts relate to a differentiable user-item co-clustering (“DUICC”) model for recommendation and co-clustering. Users' interaction with items (e.g., content) may be centered around information co-clusters—groups of items and users that exhibit common consumption behavior. The DUICC model may learn fine-grained co-cluster structures of items and users based on their interaction data. The DUICC model can then leverage the learned latent co-cluster structures to calculate preference stores of the items for a user. The top scoring items may be presented to the user as recommendations.
    Type: Application
    Filed: June 25, 2020
    Publication date: December 30, 2021
    Applicant: Microsoft Technology Licensing, LLC
    Inventors: Longqi Yang, Tobias Benjamin Schnabel, Paul Nathan Bennett, Susan Theresa Dumais
  • Publication number: 20210326742
    Abstract: A computer-implemented technique is described herein for assisting a user in advancing a task objective. The technique uses a suggestion-generating system (SGS) to provide one or more suggestions to a user in response to at least a last-submitted query provided by the user. The SGS may correspond to a classification-type or generative-type neural network. The SGS uses a machine-trained model that is trained using a multi-task training framework based on plural groups of training examples, which, in turn, are produced using different respective example-generating methods. One such example-generating method constructs a training example from queries in a search session. It operates by identifying the task-related intent the queries, and then identifying at least one sequence of queries in the search session that exhibits a coherent task-related intent. A training example is constructed based on queries in such a sequence.
    Type: Application
    Filed: April 16, 2020
    Publication date: October 21, 2021
    Inventors: Corby Louis ROSSET, Chenyan XIONG, Paul Nathan BENNETT, Saurabh Kumar TIWARY, Daniel Fernando CAMPOS, Xia SONG, Nicholas Eric CRASWELL
  • Patent number: 11138285
    Abstract: A computer-implemented technique receives an input expression that a user submits with an intent to accomplish some objective. The technique then uses a machine-trained intent encoder component to map the input expression into an input expression intent vector (IEIV). The IEIV corresponds to a distributed representation of the intent associated with the input expression, within a vector intent vector space. The technique then leverages the intent vector to facilitate some downstream application task, such as the retrieval of information. Some application tasks also use a neighbor search component to find expressions that express an intent similar to that of the input expression. A training system trains the intent encoder component based on the nexus between queries and user clicks, as recorded in a search engine's search log.
    Type: Grant
    Filed: March 7, 2019
    Date of Patent: October 5, 2021
    Assignee: Microsoft Technology Licensing, LLC
    Inventors: Hongfei Zhang, Xia Song, Chenyan Xiong, Corbin Louis Rosset, Paul Nathan Bennett, Nicholas Eric Craswell, Saurabh Kumar Tiwary
  • Patent number: 11080073
    Abstract: A digital task document can include instructions for performing a task, and a task state data structure can indicate a state of completion of the task. A first update of the data structure can be performed in response to visual user input received from a user profile via a first computer application/device. A second update of the data structure can be performed in response to natural language input received from the user profile via the second computer application/device. A first set of task guidance can be provided to the user profile via the first application/device in a visual format by displaying the task document on a computer display. A second set of task guidance can be provided to the user profile via the second application/device in a natural language format. The first and second sets of task guidance can be provided using the task document and the data structure.
    Type: Grant
    Filed: July 10, 2020
    Date of Patent: August 3, 2021
    Inventors: Russell Allen Herring, Jr., Adam Fourney, Ryen William White, Paul Nathan Bennett
  • Publication number: 20210224324
    Abstract: The present disclosure relates to systems and methods for discovering relatedness between entities from a corpora of information by automatically extracting attributes from the plurality of heterogeneous entities in a graph. A standardized representation of the extracted attributes from the plurality of heterogeneous entities are propagated across the graph and these propagated attributes are used to find a degree to which the plurality of heterogeneous entities are associated with the extracted attributes. The degree to which the plurality of heterogeneous entities are associated with the extracted attributes is used to create a representation space illustrating a level of relatedness of an entity to another entity of the plurality of heterogeneous entities.
    Type: Application
    Filed: February 3, 2020
    Publication date: July 22, 2021
    Applicant: Microsoft Technology Licensing, LLC
    Inventors: Adam FOURNEY, Robert Alexander SIM, Shane Frandon WILLIAMS, Paul Nathan BENNETT, Tara Lynn SAFAVI
  • Publication number: 20210089594
    Abstract: This document relates to natural language processing using a framework such as a neural network. One example method involves obtaining a first document and a second document and propagating attention from the first document to the second document. The example method also involves producing contextualized semantic representations of individual words in the second document based at least on the propagating. The contextualized semantic representations can provide a basis for performing one or more natural language processing operations.
    Type: Application
    Filed: September 25, 2019
    Publication date: March 25, 2021
    Applicant: Microsoft Technology Licensing, LLC
    Inventors: Chenyan Xiong, Chen Zhao, Corbin Louis Rosset, Paul Nathan Bennett, Xia Song, Saurabh Kumar Tiwary
  • Publication number: 20210064398
    Abstract: A digital task document can include instructions for performing a task, and a task state data structure can indicate a state of completion of the task. A first update of the data structure can be performed in response to visual user input received from a user profile via a first computer application/device. A second update of the data structure can be performed in response to natural language input received from the user profile via the second computer application/device. A first set of task guidance can be provided to the user profile via the first application/device in a visual format by displaying the task document on a computer display. A second set of task guidance can be provided to the user profile via the second application/device in a natural language format. The first and second sets of task guidance can be provided using the task document and the data structure.
    Type: Application
    Filed: July 10, 2020
    Publication date: March 4, 2021
    Inventors: Russell Allen HERRING, JR., Adam FOURNEY, Ryen William WHITE, Paul Nathan BENNETT
  • Publication number: 20200302264
    Abstract: Disclosed are techniques for extracting, identifying, and consuming imprecise temporal elements (“ITEs”). A user input may be received from a client device. A prediction may be generated of one or more time intervals to which the user input refers based upon an ITE model. The user input may be associated with the prediction, and provided to the client device.
    Type: Application
    Filed: June 10, 2020
    Publication date: September 24, 2020
    Applicant: Microsoft Technology Licensing, LLC
    Inventors: Adam FOURNEY, Paul Nathan BENNETT, Ryen WHITE, Eric HORVITZ, Xin RONG, David GRAUS
  • Publication number: 20200285687
    Abstract: A computer-implemented technique is described herein that receives an input expression that a user submits with an intent to accomplish some objective. The technique then uses a machine-trained intent encoder component to map the input expression into an input expression intent vector (IEIV). The IEIV corresponds to a distributed representation of the intent associated with the input expression, within a vector intent vector space. The technique then leverages the intent vector to facilitate some downstream application task, such as the retrieval of information. Some application tasks also use a neighbor search component to find expressions that express an intent similar to that of the input expression. A training system trains the intent encoder component based on the nexus between queries and user clicks, as recorded in a search engine's search log.
    Type: Application
    Filed: March 7, 2019
    Publication date: September 10, 2020
    Inventors: Hongfei ZHANG, Xia SONG, Chenyan XIONG, Corbin Louis ROSSET, Paul Nathan BENNETT, Nicholas Eric CRASWELL, Saurabh Kumar TIWARY
  • Patent number: 10747560
    Abstract: A digital task document can include instructions for performing a task, and a task state data structure can indicate a state of completion of the task. A first update of the data structure can be performed in response to visual user input received from a user profile via a first computer application/device. A second update of the data structure can be performed in response to natural language input received from the user profile via the second computer application/device. A first set of task guidance can be provided to the user profile via the first application/device in a visual format by displaying the task document on a computer display. A second set of task guidance can be provided to the user profile via the second application/device in a natural language format. The first and second sets of task guidance can be provided using the task document and the data structure.
    Type: Grant
    Filed: March 20, 2018
    Date of Patent: August 18, 2020
    Assignee: Microsoft Technology Licensing, LLC
    Inventors: Russell Allen Herring, Jr., Adam Fourney, Ryen William White, Paul Nathan Bennett
  • Patent number: 10719757
    Abstract: Disclosed are techniques for extracting, identifying, and consuming imprecise temporal elements (“ITEs”). A user input may be received from a client device. A prediction may be generated of one or more time intervals to which the user input refers based upon an ITE model. The user input may be associated with the prediction, and provided to the client device.
    Type: Grant
    Filed: December 2, 2016
    Date of Patent: July 21, 2020
    Assignee: MICROSOFT TECHNOLOGY LICENSING, LLC
    Inventors: Adam Fourney, Paul Nathan Bennett, Ryen White, Eric Horvitz, Xin Rong, David Graus