Patents by Inventor Paul O. Leisher

Paul O. Leisher has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11942759
    Abstract: The present technology can be used to control the current injection profile in the longitudinal direction of a high-power diode laser in order to optimize current densities as a function of position in the cavity to promote higher reliable output power and increase the electrical to optical conversion efficiency of the device beyond the level which can be achieved without application of this technique. This approach can be utilized, e.g., in the fabrication of semiconductor laser chips to improve the output power and wall plug efficiency for applications requiring improved performance operation.
    Type: Grant
    Filed: January 31, 2023
    Date of Patent: March 26, 2024
    Assignee: LAWRENCE LIVERMORE NATIONAL SECURITY, LLC
    Inventors: Paul O. Leisher, Robert J. Deri, Susant K. Patra
  • Publication number: 20230178960
    Abstract: The present technology can be used to control the current injection profile in the longitudinal direction of a high-power diode laser in order to optimize current densities as a function of position in the cavity to promote higher reliable output power and increase the electrical to optical conversion efficiency of the device beyond the level which can be achieved without application of this technique. This approach can be utilized, e.g., in the fabrication of semiconductor laser chips to improve the output power and wall plug efficiency for applications requiring improved performance operation.
    Type: Application
    Filed: January 31, 2023
    Publication date: June 8, 2023
    Applicant: LAWRENCE LIVERMORE NATIONAL SECURITY, LLC
    Inventors: Paul O. Leisher, Robert J. Deri, Susant K. Patra
  • Patent number: 11658460
    Abstract: The present technology can be used to control the current injection profile in the longitudinal direction of a high-power diode laser in order to optimize current densities as a function of position in the cavity to promote higher reliable output power and increase the electrical to optical conversion efficiency of the device beyond the level which can be achieved without application of this technique. This approach can be utilized, e.g., in the fabrication of semiconductor laser chips to improve the output power and wall plug efficiency for applications requiring improved performance operation.
    Type: Grant
    Filed: March 26, 2019
    Date of Patent: May 23, 2023
    Assignee: LAWRENCE LIVERMORE NATIONAL SECURITY, LLC
    Inventors: Paul O. Leisher, Robert J. Deri, Susant K. Patra
  • Patent number: 10992105
    Abstract: A coating having a mismatched coefficient of thermal expansion is applied to an underlying light emitting diode (LED) or laser diode (LD), such that as the temperature of the device changes, a varying level of strain is introduced to the underlying LED or LD. Because strain can also adjust the effective bandgap energy (and hence emission wavelength) of the device, the external strain-inducing coating can act to either compensate for the wavelength shift due to temperature (resulting in reduced d?/dT) or accentuate it (resulting in increased d?/dT). By proper selection of coating material and geometry, full control over d?/dT can be achieved.
    Type: Grant
    Filed: June 7, 2019
    Date of Patent: April 27, 2021
    Assignee: LAWRENCE LIVERMORE NATIONAL SECURITY, LLC
    Inventors: Lars F. Voss, Paul O. Leisher
  • Publication number: 20210057879
    Abstract: The present technology can be used to control the current injection profile in the longitudinal direction of a high-power diode laser in order to optimize current densities as a function of position in the cavity to promote higher reliable output power and increase the electrical to optical conversion efficiency of the device beyond the level which can be achieved without application of this technique. This approach can be utilized, e.g., in the fabrication of semiconductor laser chips to improve the output power and wall plug efficiency for applications requiring improved performance operation.
    Type: Application
    Filed: March 26, 2019
    Publication date: February 25, 2021
    Applicant: Lawrence Livermore National Security, LLC
    Inventors: Paul O. Leisher, Robert J. Deri, Susant K. Patra
  • Publication number: 20190386462
    Abstract: A coating having a mismatched coefficient of thermal expansion is applied to an underlying light emitting diode (LED) or laser diode (LD), such that as the temperature of the device changes, a varying level of strain is introduced to the underlying LED or LD. Because strain can also adjust the effective bandgap energy (and hence emission wavelength) of the device, the external strain-inducing coating can act to either compensate for the wavelength shift due to temperature (resulting in reduced d?/dT) or accentuate it (resulting in increased d?/dT). By proper selection of coating material and geometry, full control over d?/dT can be achieved.
    Type: Application
    Filed: June 7, 2019
    Publication date: December 19, 2019
    Applicant: Lawrence Livermore National Security, LLC
    Inventors: Lars F. Voss, Paul O. Leisher