Patents by Inventor Paul P. Nguyen

Paul P. Nguyen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10788722
    Abstract: An electrochromic device is disclosed which has a plurality of layers, including at least one planarizing layer having an upper surface roughness which is less than or equal to half of the upper surface roughness of an underlying layer in contact with a lower surface of the at least one planarizing layer, wherein at least valleys of the underlying layer are filled by the lower surface of the at least one planarizing layer. A method for fabricating the electrochromic device is also disclosed.
    Type: Grant
    Filed: November 23, 2016
    Date of Patent: September 29, 2020
    Assignee: CLEARIST INC.
    Inventors: Paul P. Nguyen, Zhongchun Wang, Nelson R. Holcomb
  • Patent number: 10654056
    Abstract: A deposition method includes: (1) providing a nozzle structure including: (a) at least one corona generator having an elongated charge emitting surface; and (b) at least one aerosol channel adapted to guide an aerosol along a flow path past the at least one corona generator; (2) generating an aerosol of a precursor solution; (3) applying to the at least one corona generator a positive or negative voltage of 1 kV-100 kV with respect to the substrate to generate a corona; and (4) flowing the aerosol through the at least one aerosol channel, along the flow path near the at least one corona generator and toward the surface of the substrate so as to charge the aerosol with ions emitted from the at least one corona generator to form charged droplets which are attracted to and deposited on the substrate, wherein the elongated charge emitting surface is a wire or blade edge, which is substantially parallel to the surface of the substrate and substantially perpendicular to the flow path, provided that the at least one
    Type: Grant
    Filed: July 9, 2018
    Date of Patent: May 19, 2020
    Assignee: Clearist Inc.
    Inventors: Paul P. Nguyen, Nelson Rob Holcomb
  • Publication number: 20200060813
    Abstract: Methods for applying polymeric material to a stent are disclosed. A mandrel is coupled to a stent body. The stent body comprises an inner surface defining a cavity and an outer surface opposing the internal surface. The stent body also has a length along an axis defined by the mandrel between a first end of the stent body and a second end of the stent body. An electrospun material is applied to at least a portion of the stent external surface and to at least a portion of the mandrel to form a coating sheet. A portion of the coating sheet extends from at least one of the first end or second end of the stent to the mandrel. One or both of the stent and the mandrel are moved to apply at least some of the portion of the coating sheet onto the internal surface of the stent body.
    Type: Application
    Filed: October 28, 2019
    Publication date: February 27, 2020
    Inventors: Paul P. Nguyen, Chris McWilliams, Connor Cady, Cody Jeremiah Kratochvil, Dylan Joseph Kratochvil
  • Patent number: 10564506
    Abstract: A method for lithiating an electrochromic device comprise forming a first transparent conductive layer on a substrate, forming an electrochromic structure on the first transparent conductive layer, forming a second transparent conductive layer on the electrochromic structure, and lithiating the electrochromic structure through the second transparent conductive layer. In one exemplary embodiment lithiating the electrochromic structure comprises lithiating the electrochromic structure at a temperature range of between about room temperature and about 500 C for the duration of the lithiation process. In another exemplary embodiment, lithiating the electrochromic structure further comprises lithiating the electrochromic structure by using at least one of sputtering, evaporation, laser ablation and exposure to a lithium salt. The electrochromic device can be configured in either a “forward” or a “reverse” stack configuration.
    Type: Grant
    Filed: January 22, 2018
    Date of Patent: February 18, 2020
    Assignee: View, Inc.
    Inventors: Paul P. Nguyen, Shiwei Liu
  • Patent number: 10456245
    Abstract: Methods for applying polymeric material to a stent are disclosed. A mandrel is coupled to a stent body. The stent body comprises an inner surface defining a cavity and an outer surface opposing the internal surface. The stent body also has a length along an axis defined by the mandrel between a first end of the stent body and a second end of the stent body. An electrospun material is applied to at least a portion of the stent external surface and to at least a portion of the mandrel to form a coating sheet. A portion of the coating sheet extends from at least one of the first end or second end of the stent to the mandrel. One or both of the stent and the mandrel are moved to apply at least some of the portion of the coating sheet onto the internal surface of the stent body.
    Type: Grant
    Filed: June 1, 2017
    Date of Patent: October 29, 2019
    Assignee: Edwards Lifesciences Corporation
    Inventors: Paul P. Nguyen, Chris McWilliams, Connor Cady, Cody Jeremiah Kratochvil, Dylan Joseph Kratochvil
  • Publication number: 20180307110
    Abstract: A method for lithiating an electrochromic device comprise forming a first transparent conductive layer on a substrate, forming an electrochromic structure on the first transparent conductive layer, forming a second transparent conductive layer on the electrochromic structure, and lithiating the electrochromic structure through the second transparent conductive layer. In one exemplary embodiment lithiating the electrochromic structure comprises lithiating the electrochromic structure at a temperature range of between about room temperature and about 500 C for the duration of the lithiation process. In another exemplary embodiment, lithiating the electrochromic structure further comprises lithiating the electrochromic structure by using at least one of sputtering, evaporation, laser ablation and exposure to a lithium salt. The electrochromic device can be configured in either a “forward” or a “reverse” stack configuration.
    Type: Application
    Filed: January 22, 2018
    Publication date: October 25, 2018
    Applicant: View, Inc.
    Inventors: Paul P. Nguyen, Shiwei Liu
  • Publication number: 20170325976
    Abstract: Methods for applying polymeric material to a stent are disclosed. A mandrel is coupled to a stent body. The stent body comprises an inner surface defining a cavity and an outer surface opposing the internal surface. The stent body also has a length along an axis defined by the mandrel between a first end of the stent body and a second end of the stent body. An electrospun material is applied to at least a portion of the stent external surface and to at least a portion of the mandrel to form a coating sheet. A portion of the coating sheet extends from at least one of the first end or second end of the stent to the mandrel. One or both of the stent and the mandrel are moved to apply at least some of the portion of the coating sheet onto the internal surface of the stent body.
    Type: Application
    Filed: June 1, 2017
    Publication date: November 16, 2017
    Inventors: Paul P. Nguyen, Chris McWilliams, Connor Cady, Cody Jeremiah Kratochvil, Dylan Joseph Kratochvil
  • Publication number: 20170075182
    Abstract: An electrochromic device is disclosed which has a plurality of layers, including at least one planarizing layer having an upper surface roughness which is less than or equal to half of the upper surface roughness of an underlying layer in contact with a lower surface of the at least one planarizing layer, wherein at least valleys of the underlying layer are filled by the lower surface of the at least one planarizing layer. A method for fabricating the electrochromic device is also disclosed.
    Type: Application
    Filed: November 23, 2016
    Publication date: March 16, 2017
    Inventors: Paul P. NGUYEN, Zhongchun WANG, Nelson R. HOLCOMB
  • Publication number: 20150077827
    Abstract: A method for lithiating an electrochromic device comprise forming a first transparent conductive layer on a substrate, forming an electrochromic structure on the first transparent conductive layer, forming a second transparent conductive layer on the electrochromic structure, and lithiating the electrochromic structure through the second transparent conductive layer. In one exemplary embodiment lithiating the electrochromic structure comprises lithiating the electrochromic structure at a temperature range of between about room temperature and about 500 C for the duration of the lithiation process. In another exemplary embodiment, lithiating the electrochromic structure further comprises lithiating the electrochromic structure by using at least one of sputtering, evaporation, laser ablation and exposure to a lithium salt. The electrochromic device can be configured in either a “forward” or a “reverse” stack configuration.
    Type: Application
    Filed: August 21, 2014
    Publication date: March 19, 2015
    Inventors: Paul P. Nguyen, Shiwei Liu
  • Patent number: 8842357
    Abstract: A method for lithiating an electrochromic device comprise forming a first transparent conductive layer on a substrate, forming an electrochromic structure on the first transparent conductive layer, forming a second transparent conductive layer on the electrochromic structure, and lithiating the electrochromic structure through the second transparent conductive layer. In one exemplary embodiment lithiating the electrochromic structure comprises lithiating the electrochromic structure at a temperature range of between about room temperature and about 500 C for the duration of the lithiation process. In another exemplary embodiment, lithiating the electrochromic structure further comprises lithiating the electrochromic structure by using at least one of sputtering, evaporation, laser ablation and exposure to a lithium salt. The electrochromic device can be configured in either a “forward” or a “reverse” stack configuration.
    Type: Grant
    Filed: December 31, 2008
    Date of Patent: September 23, 2014
    Assignee: View, Inc.
    Inventors: Paul P. Nguyen, Shiwei Liu
  • Patent number: 8031389
    Abstract: An all-solid-state electrochromic device comprises a transparent base material, and an electrochromic multilayer-stack structure formed on the transparent base material. The electrochromic multilayer-stack structure comprises a first transparent-conductive film formed on the transparent base material, an ion-storage layer formed on the first transparent-conductive film, a solid-electrolyte layer formed on the ion-storage layer, and an electrochromic layer formed on the solid-electrolyte layer. The electrochromic layer comprises a reflection-controllable electrochromic layer. In one exemplary embodiment, the electrochromic layer comprises a reflection-controllable layer that comprises at least one of antimony and an antimony-based alloy. A second transparent-conductive film can be formed on the reflection-controllable layer, or between the reflection-controllable layer and the solid-electrolyte layer.
    Type: Grant
    Filed: October 1, 2008
    Date of Patent: October 4, 2011
    Assignee: Soladigm, Inc.
    Inventors: Zhongchun Wang, Paul P. Nguyen
  • Publication number: 20110140217
    Abstract: A method and system for providing a magnetic element that can be used in a magnetic memory is disclosed. The magnetic element includes pinned, nonmagnetic spacer, and free layers. The spacer layer resides between the pinned and free layers. The free layer can be switched using spin transfer when a write current is passed through the magnetic element. The free layer includes a first ferromagnetic layer and a second ferromagnetic layer. The second ferromagnetic layer has a very high perpendicular anisotropy and an out-of-plane demagnetization energy. The very high perpendicular anisotropy energy is greater than the out-of-plane demagnetization energy of the second layer.
    Type: Application
    Filed: November 3, 2010
    Publication date: June 16, 2011
    Applicant: GRANDIS, INC.
    Inventors: Paul P. Nguyen, Yiming Huai, Eugene Chen
  • Publication number: 20110012215
    Abstract: A method and system for providing a magnetic element that can be used in a magnetic memory is disclosed. The magnetic element includes pinned, nonmagnetic spacer, and free layers. The spacer layer resides between the pinned and free layers. The free layer can be switched using spin transfer when a write current is passed through the magnetic element. The free layer includes a first ferromagnetic layer and a second ferromagnetic layer. The second ferromagnetic layer has a very high perpendicular anisotropy and an out-of-plane demagnetization energy. The very high perpendicular anisotropy energy is greater than the out-of-plane demagnetization energy of the second layer.
    Type: Application
    Filed: September 29, 2010
    Publication date: January 20, 2011
    Applicant: Grandis, Inc.
    Inventors: Paul P. Nguyen, Yiming Huai
  • Patent number: 7821088
    Abstract: A method and system for providing a magnetic element that can be used in a magnetic memory is disclosed. The magnetic element includes pinned, nonmagnetic spacer, and free layers. The spacer layer resides between the pinned and free layers. The free layer can be switched using spin transfer when a write current is passed through the magnetic element. The free layer includes a first ferromagnetic layer and a second ferromagnetic layer. The second ferromagnetic layer has a very high perpendicular anisotropy and an out-of-plane demagnetization energy. The very high perpendicular anisotropy energy is greater than the out-of-plane demagnetization energy of the second layer.
    Type: Grant
    Filed: June 5, 2008
    Date of Patent: October 26, 2010
    Assignee: Grandis, Inc.
    Inventors: Paul P. Nguyen, Yiming Huai
  • Patent number: 7804635
    Abstract: One exemplary embodiment of an electrochromic thin-film material comprises a metal-chalcogen compound; and/or a mixture or solid solution of one or more metal-rich metal-chalcogen compounds and/or lithium. One or more of the metals comprise Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Sb, or Bi, or combinations thereof; and one or more of the chalcogens comprise O, S, Se, or Te, or combinations thereof.
    Type: Grant
    Filed: March 20, 2009
    Date of Patent: September 28, 2010
    Assignee: Soladigm, Inc.
    Inventors: Zhongchun Wang, Paul P. Nguyen, Jeremy Alexander Dixon
  • Publication number: 20100238535
    Abstract: One exemplary embodiment of an electrochromic thin-film material comprises a metal-chalcogen compound; and/or a mixture or solid solution of one or more metal-rich metal-chalcogen compounds and/or lithium. One or more of the metals comprise Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Sb, or Bi, or combinations thereof; and one or more of the chalcogens comprise O, S, Se, or Te, or combinations thereof.
    Type: Application
    Filed: March 20, 2009
    Publication date: September 23, 2010
    Inventors: Zhongchun Wang, Paul P. Nguyen, Jeremy A. Dixon
  • Publication number: 20100165440
    Abstract: A method for lithiating an electrochromic device comprise forming a first transparent conductive layer on a substrate, forming an electrochromic structure on the first transparent conductive layer, forming a second transparent conductive layer on the electrochromic structure, and lithiating the electrochromic structure through the second transparent conductive layer. In one exemplary embodiment lithiating the electrochromic structure comprises lithiating the electrochromic structure at a temperature range of between about room temperature and about 500 C for the duration of the lithiation process. In another exemplary embodiment, lithiating the electrochromic structure further comprises lithiating the electrochromic structure by using at least one of sputtering, evaporation, laser ablation and exposure to a lithium salt. The electrochromic device can be configured in either a “forward” or a “reverse” stack configuration.
    Type: Application
    Filed: December 31, 2008
    Publication date: July 1, 2010
    Inventors: Paul P. Nguyen, Shiwei Liu
  • Patent number: 7715082
    Abstract: An electrochromic switching device comprises a counter electrode, an active electrode and an electrolyte layer disposed between the counter electrode and the active electrode. The active electrode comprises at least one of an oxide, a nitride, an oxynitrides, a partial oxide, a partial nitride and a partial oxynitride of at least one of Sb, Bi, Si, Ge, Sn, Te, N, P, As, Ga, In, Al, C, Pb and I. Upon application of a current to the electrochromic switching device, a compound comprising at least one of the alkali and the alkaline earth metal ion and an element of the active electrode is formed as part of the active electrode.
    Type: Grant
    Filed: June 30, 2008
    Date of Patent: May 11, 2010
    Assignee: Soladigm, Inc.
    Inventors: Zhongchun Wang, Paul P. Nguyen
  • Publication number: 20100079845
    Abstract: An all-solid-state electrochromic device comprises a transparent base material, and an electrochromic multilayer-stack structure formed on the transparent base material. The electrochromic multilayer-stack structure comprises a first transparent-conductive film formed on the transparent base material, an ion-storage layer formed on the first transparent-conductive film, a solid-electrolyte layer formed on the ion-storage layer, and an electrochromic layer formed on the solid-electrolyte layer. The electrochromic layer comprises a reflection-controllable electrochromic layer. In one exemplary embodiment, the electrochromic layer comprises a reflection-controllable layer that comprises at least one of antimony and an antimony-based alloy. A second transparent-conductive film can be formed on the reflection-controllable layer, or between the reflection-controllable layer and the solid-electrolyte layer.
    Type: Application
    Filed: October 1, 2008
    Publication date: April 1, 2010
    Inventors: Zhongchun Wang, Paul P. Nguyen
  • Patent number: 7679810
    Abstract: One exemplary embodiment of an electrochromic device comprises a tantalum-nitride ion-blocking layer formed between a transparent conductive layer and an electrochromic layer. Another exemplary embodiment of an electrochromic device comprises a tantalum-nitride ion-blocking layer formed between a transparent conductive layer and a counter electrode. Yet another exemplary embodiment of an electrochromic device comprises a type-2 ion-blocking layer formed on a transparent conductive layer as an ion diffusion barrier overlayer. Still another exemplary embodiment of an electrochromic device comprises a transparent conductive layer formed from tantalum nitride.
    Type: Grant
    Filed: June 30, 2008
    Date of Patent: March 16, 2010
    Assignee: Soladigm, Inc.
    Inventors: Eugene Anthony Fuss, Roger W. Phillips, Paul P. Nguyen