Patents by Inventor Paul Packan

Paul Packan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20250112120
    Abstract: Integrated circuit structures having deep via bar width tuning are described. For example, an integrated circuit structure includes a plurality of gate lines extending over first and second semiconductor nanowire stack channel structures or fin structures. A plurality of trench contacts is intervening with the plurality of gate lines. A conductive structure is between the first and second semiconductor nanowire stack channel structures or fin structures, the conductive structure having a first width in a first region and a second width in a second region between the first and second semiconductor nanowire stack channel structures or fin structures, the second width different than the first width.
    Type: Application
    Filed: September 29, 2023
    Publication date: April 3, 2025
    Inventors: Tao CHU, Minwoo JANG, Yanbin LUO, Paul PACKAN, Conor P. PULS, Guowei XU, Chiao-Ti HUANG, Robin CHAO, Feng ZHANG, Ting-Hsiang HUNG, Chia-Ching LIN, Yang ZHANG, Chung-Hsun LIN, Anand S. MURTHY
  • Publication number: 20250113595
    Abstract: Multiple voltage threshold integrated circuit structures with local layout effect tuning, and methods of fabricating multiple voltage threshold integrated circuit structures with local layout effect tuning, are described. For example, an integrated circuit structure includes a first fin structure or vertical arrangement of horizontal nanowires. A second fin structure or vertical arrangement of horizontal nanowires is laterally spaced apart from the first fin structure or vertical arrangement of horizontal nanowires. An N-type gate structure is over the first fin structure or vertical arrangement of horizontal nanowires. A P-type gate structure is over the second fin structure or vertical arrangement of horizontal nanowires, the P-type gate structure in contact with the N-type gate structure with a PN boundary between the P-type gate structure and the N-type gate structure.
    Type: Application
    Filed: September 28, 2023
    Publication date: April 3, 2025
    Inventors: Tao CHU, Minwoo JANG, Yanbin LUO, Paul PACKAN, Guowei XU, Chiao-Ti HUANG, Robin CHAO, Feng ZHANG, Ting-Hsiang HUNG, Chia-Ching LIN, Yang ZHANG, Chung-Hsun LIN, Anand S. MURTHY
  • Publication number: 20250113586
    Abstract: An integrated circuit structure comprises a fin extending from a substrate, the fin comprising source and drain regions, and a channel region between the source and drain regions. A multilayer high-k gate stack comprising a plurality of materials extends conformally over the fin over the channel region. A gate electrode is over and on a topmost material in the multilayer high-k gate stack. Fluorine is implanted in the substrate beneath the multilayer high-k gate stack or in the plurality of materials comprising the multilayer high-k gate stack.
    Type: Application
    Filed: September 29, 2023
    Publication date: April 3, 2025
    Inventors: Rahul PANDEY, Yang CAO, Rahul RAMAMURTHY, Jubin NATHAWAT, Michael L. HATTENDORF, Jae HUR, Anant H. JAHAGIRDAR, Steven R. NOVAK, Tao CHU, Yanbin LUO, Minwoo JANG, Paul A. PACKAN, Owen Y. LOH, David J. TOWNER
  • Publication number: 20250107175
    Abstract: Integrated circuit structures having reduced local layout effects, and methods of fabricating integrated circuit structures having reduced local layout effects, are described. For example, an integrated circuit structure includes an NMOS region including a first plurality of fin structures or vertical stacks of horizontal nanowires, and first alternating gate lines and trench contact structures over the first plurality of fin structures or vertical stacks of horizontal nanowires. The integrated circuit structure also includes a PMOS region including a second plurality of fin structures or vertical stacks of horizontal nanowires, and second alternating gate and trench contact structures over the second plurality of fin structures or vertical stacks of horizontal nanowires. A gate line is shared between the NMOS region and the PMOS region, and a trench contact structure is shared between the NMOS region and the PMOS region.
    Type: Application
    Filed: September 25, 2023
    Publication date: March 27, 2025
    Inventors: Tao CHU, Minwoo JANG, Yanbin LUO, Paul PACKAN, Guowei XU, Chiao-Ti HUANG, Robin CHAO, Feng ZHANG, Ting-Hsiang HUNG, Chia-Ching LIN, Yang ZHANG, Chung-Hsun LIN, Anand S. MURTHY
  • Publication number: 20250006734
    Abstract: An integrated circuit (IC) device includes a stripe of material perpendicular to, and spanning between, semiconductor structures with multiple widths, and the stripe is between transistors with channel regions of differing widths in the semiconductor structures. The material stripes cover transition portions between different widths of the semiconductor structures. The semiconductor structures may be channel structures of different types, including groups of fins or nanoribbons. Channel regions of differing widths may include more or fewer fins or narrower or wider nanoribbons. The channel regions may have alternating conductivity types, n- and p-type.
    Type: Application
    Filed: June 29, 2023
    Publication date: January 2, 2025
    Applicant: Intel Corporation
    Inventors: Tao Chu, Minwoo Jang, Yanbin Luo, Paul Packan, Guowei Xu, Chiao-Ti Huang, Robin Chao, Feng Zhang, Ting-Hsiang Hung, Chia-Ching Lin, Yang Zhang, Chung-Hsun Lin
  • Publication number: 20240321859
    Abstract: An IC device may include an array of transistors. The transistors may have separate gate electrodes. A gate electrode may include polysilicon. The gate electrodes may be separated from each other by one or more electrical insulators. The separated gate electrodes have shorter lengths, compared with connected gate electrodes, which can optimize the performance of the IC device due to local layout effect. Also, the IC device may include conductive structures crossing the support structures of multiple transistors. Such conductive structures may cause strain in the IC device, which can boost the local layout effect. The conductive structures may be insulated from a power plane. Alternatively or additionally, the IC device may include dielectric structures, which may be formed by removing gate electrodes in some of the transistors and providing a dielectric material into the openings. The presence of the dielectric structures can further boost the local layout effect.
    Type: Application
    Filed: March 22, 2023
    Publication date: September 26, 2024
    Applicant: Intel Corporation
    Inventors: Tao Chu, Minwoo Jang, Yanbin Luo, Paul Packan, Guowei Xu, Chiao-Ti Huang, Robin Chao, Feng Zhang, Anand S. Murthy, Tahir Ghani
  • Publication number: 20240321887
    Abstract: An IC device may have layout with reduced N-P boundary effect. The IC device may include two rows of transistors. The first row may include one or more P-type transistors. The second row may include N-type transistors. The gate electrode of a P-type transistor may include different conductive materials from the gate electrode of a N-type transistor. Each P-type transistor in the first row may be over a N-type transistor in the second row and contact the N-type transistor in the second row. For instance, the gate of the P-type transistor may contact the gate of the N-type transistor. Vacancy diffusion may occur at the boundary of the P-type transistor and the N-type transistor, causing N-P boundary effect. At least one or more other N-type transistors in the second row do not contact any P-type transistor, which can mitigate the N-P boundary effect in the IC device.
    Type: Application
    Filed: March 22, 2023
    Publication date: September 26, 2024
    Applicant: Intel Corporation
    Inventors: Tao Chu, Yanbin Luo, Yusung Kim, Minwoo Jang, Paul Packan, Guowei Xu, Chiao-Ti Huang, Robin Chao, Feng Zhang, Yang Zhang, Zheng Guo
  • Publication number: 20240113118
    Abstract: Integrated circuit dies, apparatuses, systems, and techniques, are described herein related to low and ultra-low threshold voltage transistor cells. A first transistor cell includes separate semiconductor bodies contacted by separate gate electrodes having a dielectric material therebetween. A second transistor cell includes separate semiconductor bodies contacted by a shared gate electrode that couples to both semiconductor bodies. Transistors of the second transistor cell may be operated at a lower threshold voltage than those of the first transistor cell due to increased strain on the semiconductor bodies from the shared gate electrode.
    Type: Application
    Filed: September 29, 2022
    Publication date: April 4, 2024
    Applicant: Intel Corporation
    Inventors: Tao Chu, Minwoo Jang, Yanbin Luo, Paul A. Packan
  • Publication number: 20230317594
    Abstract: Embodiments disclosed herein include a semiconductor device. In an embodiment, the semiconductor device comprises a substrate and a transistor over the substrate. In an embodiment, the transistor comprises a source, a gate, and a drain. In an embodiment, the semiconductor device further comprises a first metal layer above the transistor, where the first metal layer comprises, a source metal coupled to the source, a drain metal coupled to the drain, and a gate metal coupled to the gate. In an embodiment, the source metal, the drain metal, and the gate metal are parallel conductive lines. In an embodiment, a backside via passes through the substrate, and a contact metal in the first metal layer is coupled to the backside via. In an embodiment, the contact metal is oriented orthogonal to the source metal.
    Type: Application
    Filed: March 31, 2022
    Publication date: October 5, 2023
    Inventors: Tao CHU, Minwoo JANG, Aurelia WANG, Conor P. PULS, Lin HU, Jaladhi MEHTA, Brian GREENE, Chung-Hsun LIN, Walid M. HAFEZ, Paul PACKAN
  • Publication number: 20230253499
    Abstract: A method including forming an opening in a junction region of a fin on and extending from a substrate; introducing a doped semiconductor material in the opening; and thermal processing the doped semiconductor material. A method including forming a gate electrode on a fin extending from a substrate; forming openings in the fin adjacent opposite sides of the gate electrode; introducing a doped semiconductor material in the openings; and thermally processing the doped semiconductor material sufficient to induce the diffusion of a dopant in the doped semiconductor material. An apparatus including a gate electrode transversing a fin extending from a substrate; and semiconductor material filled openings in junction regions of the fin adjacent opposite sides of the gate electrode, wherein the semiconductor material comprises a dopant.
    Type: Application
    Filed: April 13, 2023
    Publication date: August 10, 2023
    Inventors: Pratik A. PATEL, Mark Y. LIU, Jami A. WIEDEMER, Paul A. PACKAN
  • Patent number: 11664452
    Abstract: A method including forming an opening in a junction region of a fin on and extending from a substrate; introducing a doped semiconductor material in the opening; and thermal processing the doped semiconductor material. A method including forming a gate electrode on a fin extending from a substrate; forming openings in the fin adjacent opposite sides of the gate electrode; introducing a doped semiconductor material in the openings; and thermally processing the doped semiconductor material sufficient to induce the diffusion of a dopant in the doped semiconductor material. An apparatus including a gate electrode transversing a fin extending from a substrate; and semiconductor material filled openings in junction regions of the fin adjacent opposite sides of the gate electrode, wherein the semiconductor material comprises a dopant.
    Type: Grant
    Filed: October 30, 2020
    Date of Patent: May 30, 2023
    Assignee: Intel Corporation
    Inventors: Pratik A. Patel, Mark Y. Liu, Jami A. Wiedemer, Paul A. Packan
  • Patent number: 11264517
    Abstract: A varactor is described that may be constructed in CMOS and has a high tuning range. In some embodiments, the varactor includes a well, a plurality of gates formed over the well and having a capacitive connection to the well, the gates comprising a first subset of the gates that are adjacent and consecutive and coupled to a positive pole of an excitation oscillation signal, and a second subset of the gates that are adjacent and consecutive and coupled to a negative pole of the excitation oscillation signal, and a plurality of source/drain terminals formed over the well and having an ohmic connection to the well, each coupled to a respective gate to receive a control voltage to control the capacitance of the varactor.
    Type: Grant
    Filed: December 24, 2014
    Date of Patent: March 1, 2022
    Assignee: Intel Corporation
    Inventors: Mohammed El-Tanani, Paul Packan, Jami Wiedemer, Andrey Mezhiba, Yonping Fan
  • Publication number: 20210050448
    Abstract: A method including forming an opening in a junction region of a fin on and extending from a substrate; introducing a doped semiconductor material in the opening; and thermal processing the doped semiconductor material. A method including forming a gate electrode on a fin extending from a substrate; forming openings in the fin adjacent opposite sides of the gate electrode; introducing a doped semiconductor material in the openings; and thermally processing the doped semiconductor material sufficient to induce the diffusion of a dopant in the doped semiconductor material. An apparatus including a gate electrode transversing a fin extending from a substrate; and semiconductor material filled openings in junction regions of the fin adjacent opposite sides of the gate electrode, wherein the semiconductor material comprises a dopant.
    Type: Application
    Filed: October 30, 2020
    Publication date: February 18, 2021
    Inventors: Pratik A. PATEL, Mark Y. LIU, Jami A. WIEDEMER, Paul A. PACKAN
  • Patent number: 10872977
    Abstract: A method including forming an opening in a junction region of a fin on and extending from a substrate; introducing a doped semiconductor material in the opening; and thermal processing the doped semiconductor material. A method including forming a gate electrode on a fin extending from a substrate; forming openings in the fin adjacent opposite sides of the gate electrode; introducing a doped semiconductor material in the openings; and thermally processing the doped semiconductor material sufficient to induce the diffusion of a dopant in the doped semiconductor material. An apparatus including a gate electrode transversing a fin extending from a substrate; and semiconductor material filled openings in junction regions of the fin adjacent opposite sides of the gate electrode, wherein the semiconductor material comprises a dopant.
    Type: Grant
    Filed: April 16, 2019
    Date of Patent: December 22, 2020
    Assignee: Intel Corporation
    Inventors: Pratik A. Patel, Mark Y. Liu, Jami A. Wiedemer, Paul A. Packan
  • Publication number: 20190245088
    Abstract: A method including forming an opening in a junction region of a fin on and extending from a substrate; introducing a doped semiconductor material in the opening; and thermal processing the doped semiconductor material. A method including forming a gate electrode on a fin extending from a substrate; forming openings in the fin adjacent opposite sides of the gate electrode; introducing a doped semiconductor material in the openings; and thermally processing the doped semiconductor material sufficient to induce the diffusion of a dopant in the doped semiconductor material. An apparatus including a gate electrode transversing a fin extending from a substrate; and semiconductor material filled openings in junction regions of the fin adjacent opposite sides of the gate electrode, wherein the semiconductor material comprises a dopant.
    Type: Application
    Filed: April 16, 2019
    Publication date: August 8, 2019
    Inventors: Pratik A. PATEL, Mark Y. LIU, Jami A. WIEDEMER, Paul A. PACKAN
  • Patent number: 10304956
    Abstract: A method including forming an opening in a junction region of a fin on and extending from a substrate; introducing a doped semiconductor material in the opening; and thermal processing the doped semiconductor material. A method including forming a gate electrode on a fin extending from a substrate; forming openings in the fin adjacent opposite sides of the gate electrode; introducing a doped semiconductor material in the openings; and thermally processing the doped semiconductor material sufficient to induce the diffusion of a dopant in the doped semiconductor material. An apparatus including a gate electrode transversing a fin extending from a substrate; and semiconductor material filled openings in junction regions of the fin adjacent opposite sides of the gate electrode, wherein the semiconductor material comprises a dopant.
    Type: Grant
    Filed: December 27, 2013
    Date of Patent: May 28, 2019
    Assignee: Intel Corporation
    Inventors: Pratik A. Patel, Mark Y. Liu, Jami A. Wiedemer, Paul A. Packan
  • Publication number: 20170330977
    Abstract: A varactor is described that may be constructed in CMOS and has a high tuning range. In some embodiments, the varactor includes a well, a plurality of gates formed over the well and having a capacitive connection to the well, the gates comprising a first subset of the gates that are adjacent and consecutive and coupled to a positive pole of an excitation oscillation signal, and a second subset of the gates that are adjacent and consecutive and coupled to a negative pole of the excitation oscillation signal, and a plurality of source/drain terminals formed over the well and having an ohmic connection to the well, each coupled to a respective gate to receive a control voltage to control the capacitance of the varactor.
    Type: Application
    Filed: December 24, 2014
    Publication date: November 16, 2017
    Inventors: MOHAMMED EL-TANANI, PAUL PACKAN, JAMI WIEDEMER, ANDREY MEZHIBA, YONPING FAN
  • Patent number: 9793373
    Abstract: Microelectronic structures embodying the present invention include a field effect transistor (FET) having highly conductive source/drain extensions. Formation of such highly conductive source/drain extensions includes forming a passivated recess which is back filled by epitaxial deposition of doped material to form the source/drain junctions. The recesses include a laterally extending region that underlies a portion of the gate structure. Such a lateral extension may underlie a sidewall spacer adjacent to the vertical sidewalls of the gate electrode, or may extend further into the channel portion of a FET such that the lateral recess underlies the gate electrode portion of the gate structure. In one embodiment the recess is back filled by an in-situ epitaxial deposition of a bilayer of oppositely doped material. In this way, a very abrupt junction is achieved that provides a relatively low resistance source/drain extension and further provides good off-state subthreshold leakage characteristics.
    Type: Grant
    Filed: March 16, 2017
    Date of Patent: October 17, 2017
    Assignee: Intel Corporation
    Inventors: Anand S. Murthy, Robert S. Chau, Patrick Morrow, Chia-Hong Jan, Paul Packan
  • Publication number: 20170186855
    Abstract: Microelectronic structures embodying the present invention include a field effect transistor (FET) having highly conductive source/drain extensions. Formation of such highly conductive source/drain extensions includes forming a passivated recess which is back filled by epitaxial deposition of doped material to form the source/drain junctions. The recesses include a laterally extending region that underlies a portion of the gate structure. Such a lateral extension may underlie a sidewall spacer adjacent to the vertical sidewalls of the gate electrode, or may extend further into the channel portion of a FET such that the lateral recess underlies the gate electrode portion of the gate structure. In one embodiment the recess is back filled by an in-situ epitaxial deposition of a bilayer of oppositely doped material. In this way, a very abrupt junction is achieved that provides a relatively low resistance source/drain extension and further provides good off-state subthreshold leakage characteristics.
    Type: Application
    Filed: March 16, 2017
    Publication date: June 29, 2017
    Inventors: Anand S. Murthy, Robert S. CHAU, Patrick MORROW, Chia-Hong JAN, Paul PACKAN
  • Patent number: 9640634
    Abstract: Microelectronic structures embodying the present invention include a field effect transistor (FET) having highly conductive source/drain extensions. Formation of such highly conductive source/drain extensions includes forming a passivated recess which is back filled by epitaxial deposition of doped material to form the source/drain junctions. The recesses include a laterally extending region that underlies a portion of the gate structure. Such a lateral extension may underlie a sidewall spacer adjacent to the vertical sidewalls of the gate electrode, or may extend further into the channel portion of a FET such that the lateral recess underlies the gate electrode portion of the gate structure. In one embodiment the recess is back filled by an in-situ epitaxial deposition of a bilayer of oppositely doped material. In this way, a very abrupt junction is achieved that provides a relatively low resistance source/drain extension and further provides good off-state subthreshold leakage characteristics.
    Type: Grant
    Filed: February 4, 2010
    Date of Patent: May 2, 2017
    Assignee: Intel Corporation
    Inventors: Anand S. Murthy, Robert S. Chau, Patrick Morrow, Chia-Hong Jan, Paul Packan