Patents by Inventor Paul R. Mazanec

Paul R. Mazanec has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220266038
    Abstract: A cochlear implant and analysis system includes a stimulator, an input source, a signal processor, a wireless communication interface, and an external device. The system can receive an acoustic stimulus, generate an input signal representative thereof, and apply a transfer function to the input signal to generate and output a stimulation signal to the stimulator. The signal processor can receive an analysis input indicating a first signal for analysis and generate an analysis signal based on the received analysis input. The first signal can be an input signal from an input source or a result of one or more processing steps. The signal processor can output the analysis signal to the wireless communication interface with the wireless communication interface configured to output a signal representative of the analysis signal to an external device.
    Type: Application
    Filed: February 23, 2021
    Publication date: August 25, 2022
    Inventor: Paul R. Mazanec
  • Publication number: 20220266002
    Abstract: Cochlear implant systems can comprise an implantable subsystem comprising a cochlear electrode, a stimulator, a battery, and a first near field communication interface positioned subcutaneously proximate an ear canal. Cochlear implant systems can further comprise a removable earplug comprising a sensor, a second near field communication interface, and a signal processor. The removable earplug can be inserted into an ear canal to align the first and second near field communication interfaces. Once aligned, the battery can provide electrical power to the removable earplug via the near field communication interfaces. The signal processor can receive input signals from the sensor of the removable earplug and generate a stimulation signal representative of the auditory signals. The signal processor can communicate the stimulation signal to the stimulator via the near field communication interfaces.
    Type: Application
    Filed: February 23, 2021
    Publication date: August 25, 2022
    Inventor: Paul R. Mazanec
  • Publication number: 20220176103
    Abstract: Cochlear implant systems can include first and second subsystems, each subsystem including an input source, a signal processor, a stimulator, and a cochlear electrode. A single implantable battery and/or communication module can provide power to and communicate with each subsystem, such as via each signal processor. Systems can include separate leads providing separate communication between the implantable battery and/or communication module and each subsystem, or can include a bifurcated lead providing signals to both subsystems simultaneously. The implantable battery and/or communication module can be configured to output addressed signals designating for which subsystem a signal is intended. The implantable battery and/or communication module can be configured to separately update settings associated with each respective subsystem, such as a transfer function associated with each signal processor.
    Type: Application
    Filed: February 21, 2022
    Publication date: June 9, 2022
    Inventors: Paul R. Mazanec, Benjamin R. Whittington, Timothy J. Earnest, Joshua J. Wibben
  • Publication number: 20220168581
    Abstract: Cochlear implant systems can include a cochlear electrode and a stimulator in electrical communication with the cochlear electrode. The stimulator can be in communication with a controller, which is in communication with a testing circuit and a switching network. The stimulator can include a plurality of source elements. The controller can control the switching network to place the plurality of source elements into communication with the testing circuit. The controller can further cause one of the plurality of source elements to emit an electrical current and can determine an amount of electrical current emitted from the source element using the testing circuit. The controller can compare the determined amount of electrical current emitted by the source element with a prescribed current. The controller can adjust the output of each of the plurality of source elements based on the determined amount of electrical current emitted by the stimulator.
    Type: Application
    Filed: December 2, 2020
    Publication date: June 2, 2022
    Inventor: Paul R. Mazanec
  • Publication number: 20220168570
    Abstract: Cochlear implant systems can comprise a cochlear implant system comprising a cochlear electrode, a stimulator, an input source, and an implantable battery and/or communication module. The signal processor may be programmed with a transfer function and be configured to receive input signals from the input source and output a stimulation signal to the stimulator based on the received input signals with the transfer function. The system may be configured to receive a status indicator signal indicative of whether an external auditory aid device is active and update the transfer function of the signal processor if the external auditory aid device is active. For example, the signal processor can operate programmed with a first transfer function if the external auditory aid device is not active and with a second transfer function if the external auditory aid device is active.
    Type: Application
    Filed: December 2, 2020
    Publication date: June 2, 2022
    Inventor: Paul R. Mazanec
  • Publication number: 20220168569
    Abstract: Cochlear implant systems can include an inner ear sensor configured to receive a stimulus signal from the cochlear tissue of a wearer and generate an input signal based on the received stimulus signal. The inner ear sensor can be configured to detect pressure, for example, within a wearer's cochlear tissue and generate an input signal based on the detected pressure. The inner ear sensor can be integrated with a cochlear electrode implanted in the cochlear tissue. Systems can include a signal processor programmed with a transfer function and configured to receive an input signal and output a stimulation signal based on the received input signal and transfer function. Systems can include an implantable battery and/or communication module in communication with the signal processor. The implantable battery and/or communication module can be configured to interface with and update the transfer function of the signal processor.
    Type: Application
    Filed: December 2, 2020
    Publication date: June 2, 2022
    Inventor: Paul R. Mazanec
  • Publication number: 20220143398
    Abstract: Cochlear implant systems can include a signal processor, an implantable battery and/or communication module, and a plurality of conductors coupling the implantable battery and/or communication module and the signal processor. The implantable battery and/or communication module can communicate data and deliver electrical power to the signal processor via the plurality of conductors. The implantable battery and/or communication module can be configured to perform characterization process to determine one or more characteristics of one or more such conductors. Characterization processes can include determining an impedance between two conductors as a function of frequency, determining whether a conductor is intact, and determining an impedance of a given conductor. Some characterization processes include grounding one or more conductors.
    Type: Application
    Filed: January 26, 2022
    Publication date: May 12, 2022
    Inventors: Paul R. Mazanec, Joshua J. Wibben, Timothy J. Earnest
  • Patent number: 11266831
    Abstract: Cochlear implant systems can include first and second subsystems, each subsystem including an input source, a signal processor, a stimulator, and a cochlear electrode. A single implantable battery and/or communication module can provide power to and communicate with each subsystem, such as via each signal processor. Systems can include separate leads providing separate communication between the implantable battery and/or communication module and each subsystem, or can include a bifurcated lead providing signals to both subsystems simultaneously. The implantable battery and/or communication module can be configured to output addressed signals designating for which subsystem a signal is intended. The implantable battery and/or communication module can be configured to separately update settings associated with each respective subsystem, such as a transfer function associated with each signal processor.
    Type: Grant
    Filed: February 21, 2020
    Date of Patent: March 8, 2022
    Assignee: Envoy Medical Corporation
    Inventors: Paul R. Mazanec, Benjamin R. Whittington, Timothy J. Earnest, Joshua J. Wibben
  • Publication number: 20220070594
    Abstract: Pairing systems for pairing external devices to a cochlear implant system can comprise an external housing and an external pairing system. The external housing may comprise a first surface and one or more compartments, each configured to house an external device capable of wirelessly interfacing with an implantable cochlear implant system. The external pairing device may comprise a second surface and one or more corresponding near field communication devices. The near field communication devices may be arranged such that the first surface of the external housing can be aligned with the second surface of the external pairing device in such a way that each of the near field communication devices aligns with a corresponding compartment of the external housing. The external pairing device can provide communication between a programming device and external devices contained within compartments of the external housing via one or more corresponding near field communication devices.
    Type: Application
    Filed: August 28, 2020
    Publication date: March 3, 2022
    Inventor: Paul R. Mazanec
  • Patent number: 11260220
    Abstract: Cochlear implant systems can include a signal processor, an implantable battery and/or communication module, and a plurality of conductors coupling the implantable battery and/or communication module and the signal processor. The implantable battery and/or communication module can communicate data and deliver electrical power to the signal processor via the plurality of conductors. The implantable battery and/or communication module can be configured to perform characterization process to determine one or more characteristics of one or more such conductors. Characterization processes can include determining an impedance between two conductors as a function of frequency, determining whether a conductor is intact, and determining an impedance of a given conductor. Some characterization processes include grounding one or more conductors.
    Type: Grant
    Filed: February 21, 2020
    Date of Patent: March 1, 2022
    Assignee: Envoy Medical Corporation
    Inventors: Paul R. Mazanec, Joshua J. Wibben, Timothy J. Earnest
  • Patent number: 11141591
    Abstract: Techniques, devices, and systems for isolating, by isolation circuitry connected to a power source, a voltage from the power source, receiving, by sensing circuitry, the isolated voltage, receiving, by the sensing circuitry, a reference voltage from an implantable reference electrode via a reference node, and sensing, by the sensing circuitry, the biomedical signal with two or more implantable sensing electrodes using the isolated voltage with respect to the reference voltage.
    Type: Grant
    Filed: December 26, 2018
    Date of Patent: October 12, 2021
    Assignee: Medtronic, Inc.
    Inventors: David A. Dinsmoor, Scott R. Stanslaski, Erik J. Peterson, Paul R. Mazanec
  • Publication number: 20200269035
    Abstract: Cochlear implant systems can include a cochlear electrode, a stimulator in electrical communication with the cochlear electrode, a sensor configured to receive a stimulus signal and generate an input signal based on the received stimulus signal, and a signal processor in communication with the stimulator and the sensor. The signal processor can include an analog filtering stage configured to generate an analog filtered signal from a received input signal and a digital filtering stage configured to generate a digitally filtered signal from the analog filtered signal. The analog filtering stage and digital filtering stage can be used to normalize the frequency response of the digitally filtered signal with respect to the stimulus signal.
    Type: Application
    Filed: February 21, 2020
    Publication date: August 27, 2020
    Inventors: Paul R. Mazanec, Benjamin R. Whittington, Timothy J. Earnest, Travis Michael Beckerle, Joshua J. Wibben
  • Publication number: 20200269047
    Abstract: Systems can include a fully-implantable cochlear implant system having an input source, a signal processor, and an implantable battery and/or communication module. The system can include an externa hub having a speaker and a wireless communication interface. The external hub can be in wireless communication with the implantable battery and/or communication module. The external hub can be configured to output a predetermined acoustic signal via the speaker and communicate information to the implantable battery and/or communication module regarding the predetermined acoustic signal. The implantable battery and/or communication module can be configured to analyze information regarding the acoustic signal output from the external hub and information from the signal processor regarding the response of the cochlear implant system to the acoustic signal. Such analysis can be used to calibrate the cochlear implant system and detect stapedial reflexes in a wearer.
    Type: Application
    Filed: February 21, 2020
    Publication date: August 27, 2020
    Inventors: Paul R. Mazanec, Benjamin R. Whittington, Timothy J. Earnest, Travis Michael Beckerle, Joshua J. Wibben
  • Publication number: 20200269057
    Abstract: Cochlear implant systems can include a near field communication device for communicating via a first wireless communication protocol and a wireless communication device for communicating via a second wireless communication protocol. An external device including an external near field communication device and an external wireless communication device can communicate with the implanted system via the first wireless communication protocol. Communication via the first wireless communication protocol can be used to enable communication between the implant system and the external device via the second wireless communication protocol. External devices can provide audio and/or data to the implant system via the second wireless communication protocol. External devices can include one or more sensors, and data from the sensors can be used to update a system transfer function based on the environment and/or location of the external device.
    Type: Application
    Filed: February 21, 2020
    Publication date: August 27, 2020
    Inventors: Paul R. Mazanec, Benjamin R. Whittington, Timothy J. Earnest, Travis Michael Beckerle, Joshua J. Wibben
  • Publication number: 20200269034
    Abstract: Cochlear implant systems can include a cochlear electrode, a stimulator in electrical communication with the cochlear electrode, a sensor configured to receive a stimulus signal and generate an input signal based on the received stimulus signal, and a signal processor in communication with the stimulator and the sensor. In some examples, the stimulator and the signal processor are integrated into a single hermetically sealed housing. The housing can include a return electrode that extends from a first side of the housing to a second side of the housing opposite the first.
    Type: Application
    Filed: February 21, 2020
    Publication date: August 27, 2020
    Inventors: Paul R. Mazanec, Benjamin R. Whittington, Timothy J. Earnest, Travis Michael Beckerle, Joshua J. Wibben
  • Publication number: 20200269048
    Abstract: Cochlear implant systems can include first and second subsystems, each subsystem including an input source, a signal processor, a stimulator, and a cochlear electrode. A single implantable battery and/or communication module can provide power to and communicate with each subsystem, such as via each signal processor. Systems can include separate leads providing separate communication between the implantable battery and/or communication module and each subsystem, or can include a bifurcated lead providing signals to both subsystems simultaneously. The implantable battery and/or communication module can be configured to output addressed signals designating for which subsystem a signal is intended. The implantable battery and/or communication module can be configured to separately update settings associated with each respective subsystem, such as a transfer function associated with each signal processor.
    Type: Application
    Filed: February 21, 2020
    Publication date: August 27, 2020
    Inventors: Paul R. Mazanec, Benjamin R. Whittington, Timothy J. Earnest, Travis Michael Beckerle, Joshua J. Wibben
  • Publication number: 20200269058
    Abstract: Cochlear implant systems can include a signal processor, an implantable battery and/or communication module, and a plurality of conductors coupling the implantable battery and/or communication module and the signal processor. The implantable battery and/or communication module can communicate data and deliver electrical power to the signal processor via the plurality of conductors. The implantable battery and/or communication module can be configured to perform characterization process to determine one or more characteristics of one or more such conductors. Characterization processes can include determining an impedance between two conductors as a function of frequency, determining whether a conductor is intact, and determining an impedance of a given conductor. Some characterization processes include grounding one or more conductors.
    Type: Application
    Filed: February 21, 2020
    Publication date: August 27, 2020
    Inventors: Paul R. Mazanec, Benjamin R. Whittington, Timothy J. Earnest, Travis Michael Beckerle, Joshua J. Wibben
  • Publication number: 20200238075
    Abstract: Cochlear implant systems can include a cochlear electrode, a stimulator in electrical communication with the cochlear electrode, a signal processor in communication with the stimulator, and an implantable battery and/or communication module. The signal processor can receive an input signal from an input source and output a stimulation signal to the stimulator based on the received input signal and a transfer function of the signal processor. The implantable battery and/or communication module may be configured to provide electrical power to the signal processor. The signal processor may include circuitry and a can surrounding and housing the circuitry as well as a first impedance between the circuitry and the can to reduce unintended electrical communication. The implantable battery and/or communication module may include circuitry and a can surrounding and housing the circuitry as well as a second impedance between the circuitry and the can to reduce unintended electrical communication.
    Type: Application
    Filed: April 6, 2020
    Publication date: July 30, 2020
    Inventors: Paul R. Mazanec, Joshua J. Wibben, Timothy J. Earnest, Benjamin R. Whittington
  • Patent number: 10646709
    Abstract: Cochlear implant systems can include a cochlear electrode, a stimulator in electrical communication with the cochlear electrode, and a signal processor in communication with the stimulator. The signal processor can receive an input signal from an input source and output a stimulation signal to the stimulator based on the received input signal and a transfer function of the signal processor. The signal processor can be connected to the stimulator via a first detachable connector configured to detachably connect and provide communication between the signal processor and the stimulator. The signal processor can be connected to the input source via a second detachable connector configured to detachably connect and provide communication between the signal processor and the input source. A modular signal processor can be detached from the stimulator and the input source for repair or replacement.
    Type: Grant
    Filed: August 17, 2017
    Date of Patent: May 12, 2020
    Assignee: Envoy Medical Corporation
    Inventors: Paul R. Mazanec, Benjamin R. Whittington, Timothy J. Earnest
  • Patent number: 10569079
    Abstract: Fully implantable cochlear implant systems can include a cochlear electrode, a stimulator in electrical communication with the cochlear electrode, a signal processor in communication with the stimulator, and an implantable battery and/or communication module in communication with the signal processor. A cochlear implant network can include an external device in wireless communication with the fully implantable cochlear implant system via one or more system components, such as the implantable battery and/or communication module, the stimulator, and/or the signal processor. The external device can be configured to wirelessly communicate signals to the fully implantable cochlear implant system such as control signals and/or audio signals. Networks can include a plurality of external devices capable of interfacing with one or more implantable components of a fully implantable cochlear implant system.
    Type: Grant
    Filed: August 17, 2017
    Date of Patent: February 25, 2020
    Assignee: Envoy Medical Corporation
    Inventors: Paul R. Mazanec, Benjamin R. Whittington, Timothy J. Earnest, Travis Michael Beckerle