Patents by Inventor Paul R. MOFFITT

Paul R. MOFFITT has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11614365
    Abstract: A luminescent diode surface within the cold shield of an infrared camera to allow for continuous non-uniformity correction with uniform irradiance across an infrared IR detector array. Further provided by the inclusion of a luminescent diode surface within the cold shield paneling is the ability to change the diode bias providing a negative luminescent effect while utilizing reverse bias and an electro-luminescent effect while utilizing a forward bias. This may then further allow for multiple set points to provide continuous offset and gain correction and to correct non-linear response effects.
    Type: Grant
    Filed: April 13, 2021
    Date of Patent: March 28, 2023
    Assignee: BAE Systems Information and Electronic Systems Integration Inc.
    Inventors: Jeremy B. Reeves, Steven R. Jost, Paul R. Moffitt, Ian B. Murray, David J. Shelton, Raymond D. Tower, Jr.
  • Patent number: 10535495
    Abstract: A system and method for imaging a sample having a complex structure (such as an integrated circuit). The sample is placed on a motion system that moves the sample with respect to an electron beam generator that is used in imaging the sample. The motion system affords thirteen degrees-of-freedom for movement of the sample, by providing a rotation stage, a fine 6-axis piezoelectric-driven stage, and a coarse 6-axis hexapod stage. Various detectors gather information to image the sample. Interferometric and/or capacitive sensors are used to measure the position of the sample and motion system.
    Type: Grant
    Filed: April 10, 2018
    Date of Patent: January 14, 2020
    Assignee: BAE Systems Information and Electronic Systems Integration Inc.
    Inventors: Chris L. Willis, Eugene M. Lavely, Adam J. Marcinuk, Paul R. Moffitt, Jonathan R. Takahashi
  • Patent number: 10520590
    Abstract: An active receiver having a digital-pixel focal plane array (DFPA) ranges a target when observing return pulses from a pulsed laser beam synced with the receiver. The DFPA establishes a time when the pulsed laser beam contacts a target and the range can then be established because the speed at which the laser beam travels is known. Various basis functions may be implemented with the DFPA data to establish when the laser beam contacts the target. Some exemplary basis functions are binary basis functions, and other exemplary basis functions are Fourier basis functions.
    Type: Grant
    Filed: April 18, 2017
    Date of Patent: December 31, 2019
    Assignee: BAE Systems Information and Electronic Systems Integration Inc.
    Inventors: Jeffrey L. Jew, Paul R. Moffitt, Leonard A. Pomeranz, Hermanus S. Pretorius
  • Patent number: 10468230
    Abstract: A system and method for imaging a sample having a complex structure (such as an integrated circuit) implements two modes of operation utilizing a common electron beam generator that produces an electron beam within a chamber. In the first mode, the electron beam interacts directly with the sample, and backscattered electrons, secondary electrons, and backward propagating fluorescent X-rays are measured. In the second mode, the electron beam interrogates the sample via X-rays generated by the electron beam within a target that is positioned between the electron beam generator and the sample. Transmitted X-rays are measured by a detector within the vacuum chamber. The sample is placed on a movable platform to precisely position the sample with respect to the electron beam. Interferometric and/or capacitive sensors are used to measure the position of the sample and movable platform to provide high accuracy metadata for performing high resolution three-dimensional sample reconstruction.
    Type: Grant
    Filed: April 10, 2018
    Date of Patent: November 5, 2019
    Assignee: BAE Systems Information and Electronic Systems Integration Inc.
    Inventors: Eugene M. Lavely, Adam J. Marcinuk, Amrita V. Masurkar, Paul R. Moffitt, Michael S. Richman, Jonathan R. Takahashi, Jonathan K. Tong, Chris L. Willis
  • Publication number: 20190311881
    Abstract: A system and method for imaging a sample having a complex structure (such as an integrated circuit) implements two modes of operation utilizing a common electron beam generator that produces an electron beam within a chamber. In the first mode, the electron beam interacts directly with the sample, and backscattered electrons, secondary electrons, and backward propagating fluorescent X-rays are measured. In the second mode, the electron beam interrogates the sample via X-rays generated by the electron beam within a target that is positioned between the electron beam generator and the sample. Transmitted X-rays are measured by a detector within the vacuum chamber. The sample is placed on a movable platform to precisely position the sample with respect to the electron beam. Interferometric and/or capacitive sensors are used to measure the position of the sample and movable platform to provide high accuracy metadata for performing high resolution three-dimensional sample reconstruction.
    Type: Application
    Filed: April 10, 2018
    Publication date: October 10, 2019
    Applicant: BAE Systems Information and Electronic Systems Integration Inc.
    Inventors: Eugene M. Lavely, Adam J. Marcinuk, Amrita V. Masurkar, Paul R. Moffitt, Michael S. Richman, Jonathan R. Takahashi, Jonathan K. Tong, Chris L. Willis
  • Publication number: 20190311877
    Abstract: A system and method for imaging a sample having a complex structure (such as an integrated circuit). The sample is placed on a motion system that moves the sample with respect to an electron beam generator that is used in imaging the sample. The motion system affords thirteen degrees-of-freedom for movement of the sample, by providing a rotation stage, a fine 6-axis piezoelectric-driven stage, and a coarse 6-axis hexapod stage. Various detectors gather information to image the sample. Interferometric and/or capacitive sensors are used to measure the position of the sample and motion system.
    Type: Application
    Filed: April 10, 2018
    Publication date: October 10, 2019
    Applicant: BAE Systems Information and Electronic Systems Integration Inc.
    Inventors: Chris L. Willis, Eugene M. Lavely, Adam J. Marcinuk, Paul R. Moffitt, Jonathan R. Takahashi
  • Patent number: 10234745
    Abstract: A solid state optical beam steering device and method of operation includes converting a frequency or wavelength of a signal in a non-linear converter associated with one channel just before launch. A second channel has a similar constructions and operation. A processor compares the phase difference between the two channels and uses the difference to horizontally steer a beam without moving mechanical parts. This establishes the solid-state nature of the present disclosure. The non-linear converter may be a quasi-phase matched non-linear converter with alternating crystal domains.
    Type: Grant
    Filed: July 5, 2017
    Date of Patent: March 19, 2019
    Assignee: BAE Systems Information and Electronic Systems Integration Inc.
    Inventors: Paul R. Moffitt, Peter A. Ketteridge, Peter G. Schunemann
  • Publication number: 20190011803
    Abstract: A solid state optical beam steering device and method of operation includes converting a frequency or wavelength of a signal in a non-linear converter associated with one channel just before launch. A second channel has a similar constructions and operation. A processor compares the phase difference between the two channels and uses the difference to horizontally steer a beam without moving mechanical parts. This establishes the solid-state nature of the present disclosure. The non-linear converter may be a quasi-phase matched non-linear converter with alternating crystal domains.
    Type: Application
    Filed: July 5, 2017
    Publication date: January 10, 2019
    Inventors: Paul R. Moffitt, Peter A. Ketteridge, Peter G. Schunemann
  • Patent number: 10156476
    Abstract: A compact, low cost FTIR spectrometer with no moving parts includes an interferometer having optical paths through silicon waveguides. The optical path lengths are varied by changing the temperature and/or carrier density of at least one of the waveguides. In embodiments, the interferometer is a Mach-Zehnder interferometer. Embodiments vary both optical path lengths in opposite directions. In embodiments, a germanium or InGaAs IR detector is grown on the same wafer as the waveguides. Embodiments include a laser pump, such as a COT CW diode laser, and wavelength mixer, such as an OPGaAs or OPGaP converter, for up and/or down converting measured IR wavelengths into a range compatible with the waveguide and detector materials. The wavelength mixer can be a waveguide. Embodiments include a sample compartment and an IR source such as a glowbar. In embodiments, the sample compartment can be exposed to ambient atmosphere for analysis of gases contained therein.
    Type: Grant
    Filed: August 13, 2015
    Date of Patent: December 18, 2018
    Assignee: BAE Systems Information and Electronic Systems Integration Inc.
    Inventors: Paul R Moffitt, Peter A Ketteridge
  • Publication number: 20180299535
    Abstract: An active receiver having a digital-pixel focal plane array (DFPA) ranges a target when observing return pulses from a pulsed laser beam synced with the receiver. The DFPA establishes a time when the pulsed laser beam contacts a target and the range can then be established because the speed at which the laser beam travels is known. Various basis functions may be implemented with the DFPA data to establish when the laser beam contacts the target. Some exemplary basis functions are binary basis functions, and other exemplary basis functions are Fourier basis functions.
    Type: Application
    Filed: April 18, 2017
    Publication date: October 18, 2018
    Inventors: Jeffrey L. Jew, Paul R. Moffitt, Leonard A. Pomeranz, Hermanus S. Pretorius
  • Patent number: 9696605
    Abstract: A method for fabricating crystalline dielectric material on top of metal layers to produce an apparatus for non-mechanical steering of an input laser beam is provided. The apparatus may include a plurality of stacked parallel dielectric waveguides, each waveguide of which is fabricated by separating layers of dielectric material from a donor wafer and bonding the separated layers of dielectric material to a receiving wafer. A plurality of voltages is applied across the stacked parallel dielectric waveguides. Each of the stacked parallel dielectric waveguides is electrically phase modulated to deflect an output beam in a predictable manner.
    Type: Grant
    Filed: September 1, 2015
    Date of Patent: July 4, 2017
    Assignee: BAE Systems Information and Electronic Systems Integration Inc.
    Inventors: Peter N. Russo, Jeffrey L. Jew, Paul R. Moffitt
  • Patent number: 9667021
    Abstract: In the method for generating blue laser light with high optical and electrical efficiency, wherein the improvement comprises the step of using a phosphate glass photonic crystal fiber rod as a gain medium.
    Type: Grant
    Filed: October 6, 2015
    Date of Patent: May 30, 2017
    Assignee: BAE Systems Information and Electronic Systems Integration Inc.
    Inventors: Daniel J. Creeden, Peter A. Ketteridge, Paul R. Moffitt, Katherine J. Snell
  • Publication number: 20160377482
    Abstract: A compact, low cost FTIR spectrometer with no moving parts includes an interferometer having optical paths through silicon waveguides. The optical path lengths are varied by changing the temperature and/or carrier density of at least one of the waveguides. In embodiments, the interferometer is a Mach-Zehnder interferometer. Embodiments vary both optical path lengths in opposite directions. In embodiments, a germanium or InGaAs IR detector is grown on the same wafer as the waveguides. Embodiments include a laser pump, such as a COT CW diode laser, and wavelength mixer, such as an OPGaAs or OPGaP converter, for up and/or down converting measured IR wavelengths into a range compatible with the waveguide and detector materials. The wavelength mixer can be a waveguide. Embodiments include a sample compartment and an IR source such as a glowbar. In embodiments, the sample compartment can be exposed to ambient atmosphere for analysis of gases contained therein.
    Type: Application
    Filed: August 13, 2015
    Publication date: December 29, 2016
    Inventors: Paul R. Moffitt, Peter A. Ketteridge
  • Publication number: 20160274437
    Abstract: A method for fabricating crystalline dielectric material on top of metal layers to produce an apparatus for non-mechanical steering of an input laser beam is provided. The apparatus may include a plurality of stacked parallel dielectric waveguides, each waveguide of which is fabricated by separating layers of dielectric material from a donor wafer and bonding the separated layers of dielectric material to a receiving wafer. A plurality of voltages is applied across the stacked parallel dielectric waveguides. Each of the stacked parallel dielectric waveguides is electrically phase modulated to deflect an output beam in a predictable manner.
    Type: Application
    Filed: September 1, 2015
    Publication date: September 22, 2016
    Inventors: Peter N. RUSSO, Jeffery L. JEW, Paul R. MOFFITT
  • Publication number: 20160099539
    Abstract: In the method for generating blue laser light with high optical and electrical efficiency, wherein the improvement comprises the step of using a phosphate glass photonic crystal fiber rod as a gain medium.
    Type: Application
    Filed: October 6, 2015
    Publication date: April 7, 2016
    Inventors: Daniel J. CREEDEN, Peter A. KETTERIDGE, Paul R. MOFFITT, Katherine J. SNELL