Patents by Inventor Paul R. Ohodnicki

Paul R. Ohodnicki has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9932267
    Abstract: An architectural transparency includes a substrate, a first dielectric layer formed over at least a portion of the substrate, a continuous metallic layer formed over at least a portion of the first dielectric layer, a second dielectric layer formed over at least a portion of the first metallic layer, and a subcritical metallic layer formed over at least a portion of the second dielectric layer such that the subcritical metallic layer forms discontinuous metallic regions.
    Type: Grant
    Filed: March 28, 2011
    Date of Patent: April 3, 2018
    Assignee: Vitro, S.A.B. de C.V.
    Inventors: Adam D. Polcyn, Andrew V. Wagner, Harry Buhay, Abhinav Bhandari, James J. Finley, Paul R. Ohodnicki, Jr., Dennis J. O'Shaughnessy, Jeffrey A. Benigni, Paul A. Medwick, James P. Thiel
  • Publication number: 20180011010
    Abstract: Disclosed herein are embodiments of sensor devices comprising a sensing component able to determine the presence of, detect, and/or quantify detectable species in a variety of environments and applications. The sensing components disclosed herein can comprise MOF materials, plasmonic nanomaterials, redox-active molecules, a metal, or any combinations thereof. In some exemplary embodiments, optical properties of the plasmonic nanomaterials and/or the redox-active molecules combined with MOF materials can be monitored directly to detect analyte species through their impact on external conditions surrounding the material or as a result of charge transfer to and from the plasmonic nanomaterial and/or the redox-active molecule as a result of interactions with the MOF material.
    Type: Application
    Filed: September 7, 2017
    Publication date: January 11, 2018
    Inventors: Chih-hung Chang, Ki-Joong Kim, Alan X. Wang, Yujing Zhang, Xinyuan Chong, John P. Baltrus, Paul R. Ohodnicki
  • Publication number: 20170341977
    Abstract: A coated article includes a substrate, a first dielectric layer, a subcritical metallic layer having discontinuous metallic regions, a primer over the subcritical layer, and a second dielectric layer over the primer layer. The primer can be a nickel-chromium alloy. The primer can be a multilayer primer having a first layer of a nickel-chromium alloy and a second layer of titania.
    Type: Application
    Filed: August 21, 2017
    Publication date: November 30, 2017
    Inventors: Adam D. Polcyn, Paul A. Medwick, Andrew V. Wagner, Paul R. Ohodnicki, James P. Thiel
  • Publication number: 20170229724
    Abstract: A method of monitoring operation of a reactor system includes causing a chemical reaction to occur within an assembly of the reactor system, and measuring a chemical composition of one or more reactants of the chemical reaction with spatial resolution at a plurality of points along a path within the assembly using a sensor system structured to implement distributed sensing. The sensor system includes an optical fiber sensing member provided at least partially within the assembly, wherein the optical fiber sensing member comprises a functionalized optical fiber based sensor device structured to exhibit a change in one or more optical properties in response to changes in the chemical composition of the one or more reactants.
    Type: Application
    Filed: August 20, 2015
    Publication date: August 10, 2017
    Applicants: UNIVERSITY OF PITTSBURGH-OF THE COMMONWEALTH SYSTEM OF HIGHER EDUCATION, UNITED STATES DEPARTMENT OF ENERGY
    Inventors: PENG K. CHEN, ZSOLT L. POOLE, PAUL R. OHODNICKI, THOMAS D. BROWN, KIRK R. GERDES, MICHAEL P. BURIC
  • Patent number: 9696256
    Abstract: The disclosure relates to a plasmon resonance-based method for H2 sensing in a gas stream utilizing a hydrogen sensing material. The hydrogen sensing material is comprises Pd-based or Pt-based nanoparticles having an average nanoparticle diameter of less than about 100 nanometers dispersed in an inert matrix having a bandgap greater than or equal to 5 eV, and an oxygen ion conductivity less than approximately 10?7 S/cm at a temperature of 700° C. Exemplary inert matrix materials include SiO2, Al2O3, and Si3N4 as well as modifications to modify the effective refractive indices through combinations and/or doping of such materials. The hydrogen sensing material utilized in the method of this disclosure may be prepared using means known in the art for the production of nanoparticles dispersed within a supporting matrix including sol-gel based wet chemistry techniques, impregnation techniques, implantation techniques, sputtering techniques, and others.
    Type: Grant
    Filed: October 20, 2015
    Date of Patent: July 4, 2017
    Assignee: U.S. Department of Energy
    Inventors: Paul R. Ohodnicki, Jr., John P. Baltrus, Thomas D. Brown
  • Patent number: 9568377
    Abstract: The disclosure relates to an optical method for temperature sensing utilizing a temperature sensing material. In an embodiment the gas stream, liquid, or solid has a temperature greater than about 500° C. The temperature sensing material is comprised of metallic nanoparticles dispersed in a dielectric matrix. The metallic nanoparticles have an electronic conductivity greater than approximately 10?1 S/cm at the temperature of the temperature sensing material. The dielectric matrix has an electronic conductivity at least two orders of magnitude less than the dispersed metallic nanoparticles at the temperature of the temperature sensing material. In some embodiments, the chemical composition of a gas stream or liquid is simultaneously monitored by optical signal shifts through multiple or broadband wavelength interrogation approaches.
    Type: Grant
    Filed: February 11, 2014
    Date of Patent: February 14, 2017
    Assignee: U.S. Department of Energy
    Inventors: Paul R. Ohodnicki, Jr., Thomas D. Brown, Michael P. Buric, Christopher Matranga
  • Publication number: 20160319412
    Abstract: A method includes producing an amorphous precursor to a nanocomposite, performing devitrification of the amorphous precursor, forming, based on the devitrification, the nanocomposite comprising an induced magnetic anisotropy, and for a first portion of the nanocomposite, determining a desired value of a magnetic permeability of the first portion, tuning, based on the desired value, the induced magnetic anisotropy for the first portion, and adjusting, based on the tuning of the induced magnetic anisotropy of the first portion, a first magnetic permeability value of the first portion of the nanocomposite, wherein the first magnetic permeability value is different from a second magnetic permeability value for a second portion of the nanocomposite.
    Type: Application
    Filed: July 8, 2016
    Publication date: November 3, 2016
    Inventors: Alex M. Leary, Paul R. Ohodnicki, Michael E. McHenry, Vladimir Keylin
  • Publication number: 20160231233
    Abstract: Disclosed herein are embodiments of sensor devices comprising a sensing component able to determine the presence of, detect, and/or quantify detectable species in a variety of environments and applications. The sensing components disclosed herein can comprise MOF materials, plasmonic nanomaterials, or combinations thereof. In an exemplary embodiment, light guides can be coupled with the sensing components described herein to provide sensor devices capable of increased NIR detection sensitivity in determining the presence of detectable species, such as gases and volatile organic compounds. In another exemplary embodiment, optical properties of the plasmonic nanomaterials combined with MOF materials can be monitored directly to detect analyte species through their impact on external conditions surrounding the particle or as a result of charge transfer to and from the plasmonic material as a result of interactions with the plasmonic material and/or the MOF material.
    Type: Application
    Filed: February 9, 2016
    Publication date: August 11, 2016
    Applicants: Oregon State University, U.S. Department of Energy
    Inventors: Alan X. Wang, Chih-hung Chang, Ki-Joong Kim, Xinyuan Chong, Paul R. Ohodnicki
  • Patent number: 9019502
    Abstract: The disclosure relates to a method of detecting a change in a chemical composition by contacting a electronically conducting perovskite-based metal oxide material with a monitored stream, illuminating the electronically conducting perovskite-based metal oxide with incident light, collecting exiting light, monitoring an optical signal based on a comparison of the incident light and the exiting light, and detecting a shift in the optical signal. The electronically conducting perovskite-based metal oxide has a perovskite-based crystal structure and an electronic conductivity of at least 10?1 S/cm, where parameters are specified at the gas stream temperature. The electronically conducting perovskite-based metal oxide has an empirical formula AxByO3-?, where A is at least a first element at the A-site, B is at least a second element at the B-site, and where 0.8<x<1.2, 0.8<y<1.2.
    Type: Grant
    Filed: July 18, 2014
    Date of Patent: April 28, 2015
    Assignee: U.S. Department of Energy
    Inventors: Paul R. Ohodnicki, Jr., Andrew M. Schultz
  • Publication number: 20140338793
    Abstract: A method includes producing an amorphous precursor to a nanocomposite, the amorphous precursor comprising a material that is substantially without crystals not exceeding 20% volume fraction; performing devitrification of the amorphous precursor, wherein the devitrification comprises a process of crystallization; forming, based on the devitrification, the nanocomposite with nano-crystals that contains an induced magnetic anisotropy; tuning, based on one or more of composition, temperature, configuration, and magnitude of stress applied during annealing and modification, the magnetic anisotropy of the nanocomposite; and adjusting, based on the tuned magnetic anisotropy, a magnetic permeability of the nanocomposite.
    Type: Application
    Filed: May 15, 2014
    Publication date: November 20, 2014
    Inventors: Alex M. Leary, Paul R. Ohodnicki, Michael E. McHenry, Vladimir Keylin, Joseph Huth, Samuel J. Kernion
  • Publication number: 20140321798
    Abstract: An optical sensor device includes an optical waveguide portion having a core, the core having a first refractive index, and a functional material layer coupled to the optical fiber portion, the functional material layer being made of a metal oxide material, the functional material layer being structured to have a second refractive index, the second refractive index being less than the first refractive index. The functional material layer may be a nanostructure material comprising the metal oxide material with a plurality of holes or voids formed therein such that the functional material layer is caused to have the second refractive index.
    Type: Application
    Filed: April 23, 2014
    Publication date: October 30, 2014
    Applicants: UNIVERSITY OF PITTSBURGH-OF THE COMMONWEALTH SYSTEM OF HIGHER EDUCATION, NATIONAL ENERGY TECHNOLOGY LABORATORY
    Inventors: PENG CHEN, ZSOLT LEVENTE POOLE, PAUL R. OHODNICKI, JR., MICHAEL PAUL BURIC
  • Publication number: 20140272453
    Abstract: A coated article includes a substrate, a first dielectric layer, a subcritical metallic layer having discontinuous metallic regions, a primer over the subcritical layer, and a second dielectric layer over the primer layer. The primer can be a nickel-chromium alloy. The primer can be a multilayer primer having a first layer of a nickel-chromium alloy and a second layer of titania.
    Type: Application
    Filed: March 11, 2014
    Publication date: September 18, 2014
    Applicant: PPG Industries Ohio, Inc.
    Inventors: Adam D. Polcyn, Paul A. Medwick, Andrew V. Wagner, Paul R. Ohodnicki, Dennis J. O'Shaughnessy, James P. Thiel
  • Patent number: 8836945
    Abstract: The disclosure relates to a method of detecting a change in a chemical composition by contacting a conducting oxide material with a monitored stream, illuminating the conducting oxide material with incident light, collecting exiting light, monitoring an optical signal based on a comparison of the incident light and the exiting light, and detecting a shift in the optical signal. The conducting metal oxide has a carrier concentration of at least 1017/cm3, a bandgap of at least 2 eV, and an electronic conductivity of at least 10?1 S/cm, where parameters are specified at the gas stream temperature. The optical response of the conducting oxide materials is proposed to result from the high carrier concentration and electronic conductivity of the conducting metal oxide, and the resulting impact of changing gas atmospheres on that relatively high carrier concentration and electronic conductivity.
    Type: Grant
    Filed: December 20, 2013
    Date of Patent: September 16, 2014
    Assignee: U.S. Department of Energy
    Inventors: Paul R. Ohodnicki, Jr., Congjun Wang, Mark A. Andio
  • Patent number: 8741657
    Abstract: The disclosure relates to a plasmon resonance-based method for gas sensing in a gas stream utilizing a gas sensing material. In an embodiment the gas stream has a temperature greater than about 500° C. The gas sensing material is comprised of gold nanoparticles having an average nanoparticle diameter of less than about 100 nanometers dispersed in an inert matrix having a bandgap greater than or equal to 5 eV, and an oxygen ion conductivity less than approximately 10?7 S/cm at a temperature of 700° C. Exemplary inert matrix materials include SiO2, Al2O3, and Si3N4 as well as modifications to modify the effective refractive indices through combinations and/or doping of such materials. Changes in the chemical composition of the gas stream are detected by changes in the plasmon resonance peak. The method disclosed offers significant advantage over active and reducible matrix materials typically utilized, such as yttria-stabilized zirconia (YSZ) or TiO2.
    Type: Grant
    Filed: February 25, 2013
    Date of Patent: June 3, 2014
    Assignee: U.S. Department of Energy
    Inventors: Paul R. Ohodnicki, Thomas D. Brown
  • Publication number: 20140144498
    Abstract: The present invention relates to a glass composition that includes: 57 to 75 percent by weight of SiO2; 3 to 11 percent by weight of Al2O3; 6 to 11 percent by weight of Na2O; 16 to 21 percent by weight of CaO; 0.01 to 0.1 percent by weight of Li2O; and less than 0.05 percent by weight of K2O. Each percent by weight is based on total weight of the glass composition. Glass products are also provided that have a bulk glass composition as described above. The glass products, such as flat glass products and glass substrates, have a strain point of at least 590° C. and a thermal expansion of at least 7.4 ppm/° C. The present invention also relates to magnetic recording articles and photovoltaic cells that include a glass substrate that has a bulk glass composition as described above.
    Type: Application
    Filed: November 28, 2012
    Publication date: May 29, 2014
    Applicant: PPG INDUSTRIES OHIO, INC.
    Inventors: Larry J. Shelestak, James W. McCamy, Paul R. Ohodnicki, JR., Hong Li, Adam D. Polcyn
  • Patent number: 8638440
    Abstract: The disclosure relates to a method of detecting a change in a chemical composition by contacting a doped oxide material with a monitored stream, illuminating the doped oxide material with incident light, collecting exiting light, monitoring an optical signal based on a comparison of the incident light and the exiting light, and detecting a shift in the optical signal. The doped metal oxide has a carrier concentration of at least 1018/cm3, a bandgap of at least 2 eV, and an electronic conductivity of at least 101 S/cm, where parameters are specified at a temperature of 25° C. The optical response of the doped oxide materials results from the high carrier concentration of the doped metal oxide, and the resulting impact of changing gas atmospheres on that relatively high carrier concentration. These changes in effective carrier densities of conducting metal oxide nanoparticles are postulated to be responsible for the change in measured optical absorption associated with free carriers.
    Type: Grant
    Filed: June 26, 2013
    Date of Patent: January 28, 2014
    Assignee: U.S. Department of Energy
    Inventors: Paul R. Ohodnicki, Jr., Congjun Wang, Mark A. Andio
  • Patent number: 8411275
    Abstract: The disclosure relates to a plasmon resonance-based method for H2 sensing in a gas stream at temperatures greater than about 500° C. utilizing a hydrogen sensing material. The hydrogen sensing material is comprised of gold nanoparticles having an average nanoparticle diameter of less than about 100 nanometers dispersed in an inert matrix having a bandgap greater than or equal to 5 eV, and an oxygen ion conductivity less than approximately 10?7 S/cm at a temperature of 700° C. Exemplary inert matrix materials include SiO2, Al2O3, and Si3N4 as well as modifications to modify the effective refractive indices through combinations and/or doping of such materials. At high temperatures, blue shift of the plasmon resonance optical absorption peak indicates the presence of H2. The method disclosed offers significant advantage over active and reducible matrix materials typically utilized, such as yttria-stabilized zirconia (YSZ) or TiO2.
    Type: Grant
    Filed: April 10, 2012
    Date of Patent: April 2, 2013
    Assignee: U.S. Department of Energy
    Inventors: Paul R. Ohodnicki, Jr., Thomas D. Brown
  • Publication number: 20110236715
    Abstract: An architectural transparency includes a substrate, a first dielectric layer formed over at least a portion of the substrate, a continuous metallic layer formed over at least a portion of the first dielectric layer, a second dielectric layer formed over at least a portion of the first metallic layer, and a subcritical metallic layer formed over at least a portion of the second dielectric layer such that the subcritical metallic layer forms discontinuous metallic regions.
    Type: Application
    Filed: March 28, 2011
    Publication date: September 29, 2011
    Applicant: PPG INDUSTRIES OHIO, INC.
    Inventors: Adam D. Polcyn, Andrew V. Wagner, Harry Buhay, Abhinav Bhandari, James J. Finley, Paul R. Ohodnicki, JR., Dennis J. O'Shaughnessy, Jeffrey A. Benigni, Paul A. Medwick, James P. Thiel