Patents by Inventor Paul R. Wentrcek

Paul R. Wentrcek has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 5268523
    Abstract: The invention relates to a process for the separation cf various dialkyl multinuclear aromatic compounds from a feed stream of mixed isomers of those compounds. A shape selective adsorbent is employed resulting in a process that is more efficient than processes based upon prior separation techniques. Of special interest are combination processes involving synthesis steps followed by sorption steps using the same shape selective materials.
    Type: Grant
    Filed: January 23, 1992
    Date of Patent: December 7, 1993
    Assignee: Catalytica, Inc.
    Inventors: Jere D. Fellmann, Paul R. Wentrcek, Peter H. Kilner
  • Patent number: 5026942
    Abstract: The selective isopropylation of a naphthyl compound to diisopropylnaphthalene enhanced in the 2,6-diisopropylnaphthalene isomer is obtained in the presence of an acidic crystalline molecular sieve catalyst having twelve membered oxygen rings. The catalyst pore aperture dimension range from 5.5 .ANG. to 7.0 .ANG.. The user of these shape selective catalysts results in a diisopropylnephthalene stream which is enhanced in .beta. isomers and enhanced in the desired 2,6-diisopropylnaphthalene isomer. A particularly preferred catalyst is synthetic Mordenite having a specific Si/Al ratio and NMR characteristics. Specific catalyst modifications are also described to improve selectivity to the desired 2,6-diisopropylnaphthalene isomer.
    Type: Grant
    Filed: December 12, 1989
    Date of Patent: June 25, 1991
    Assignee: Catalytica, Inc.
    Inventors: Jere D. Fellmann, Robert J. Saxton, Paul R. Wentrcek, Eric G. Derouane, Pascale Massiani
  • Patent number: 5017735
    Abstract: A process for enriching the fraction of 2,6-diisopropylnaphthalene contained in a quantity of mixed dialkylated naphthalenes. The mixed dialkylated naphthalenes are contacted with an adsorbant bed containing one or more molecular sieves which demonstrate shape selective preference for the 2,6-diisopropylnaphthalene isomer over other dialkylated naphthalenes. The adsorbant bed is then contacted with a desorbant capable of desorbing the 2,6-diisopropylnaphthalene from the pores of the adsorbant.
    Type: Grant
    Filed: July 24, 1989
    Date of Patent: May 21, 1991
    Assignee: Catalytica, Inc.
    Inventors: Jere Fellmann, Paul R. Wentrcek, Peter Kilner
  • Patent number: 5003122
    Abstract: The selective isopropylation of a naphthyl compound to diisopropylnaphthalene enhanced in the 2,6-diisopropylnaphthalene isomer is obtained in the presence of an acidic crystalline molecular sieve catalyst having twelve membered oxygen rings. The catalyst pore aperture dimension ranges from 5.5 .ANG. to 7.0 .ANG.. The use of these shape selective catalysts results in a diisopropylnaphthalene stream which is enhanced in .beta. isomers and enhanced in the desired 2,6-diisopropylnaphthalene isomer. A particularly preferred catalyst is synthetic Mordenite. Specific catalyst modifications are also described to improve selectivity to the desired 2,6-diisopropylnaphthalene isomer.
    Type: Grant
    Filed: October 5, 1988
    Date of Patent: March 26, 1991
    Assignee: Catalytica, Inc.
    Inventors: Jere D. Fellman, Robert J. Saxton, Paul R. Wentrcek, Eric G. Derouane
  • Patent number: 4853357
    Abstract: The additional of redox-active metal components and ligands, alternatively or simultaneously, results in increased conversion and selectivity in the palladium-catalyzed oxidation of olefins to carbonyl products in the presence of polyoxoanions. In preferred modes, heteropolyoxoanions and Isopolyoxoanions containing tungsten, molybdenum and vanadium, individually or in combination, are described. The use of copper as the redox-active metal component shows reduced allylic reactivity. The elimination of chloride from the catalyst system provides substantial engineering advantages over the prior art, particularly, the reduction of corrosion and chloro-organic by-product formation. The use of redox-active metal components and/or ligands makes the palladium-polyoxoanion catalyst system industrially practicable.
    Type: Grant
    Filed: September 30, 1987
    Date of Patent: August 1, 1989
    Assignee: Catalytica Associates
    Inventors: Janis Vasilevskis, Jacques C. De Deken, Robert J. Saxton, Paul R. Wentrcek, Jere D. Fellmann, Lyubov S. Kipnis
  • Patent number: 4723041
    Abstract: The addition of redox-active metal components and ligands, alternatively or simultaneously, results in increased conversion and selectivity in the palladium-catalyzed oxidation of olefins to carbonyl products in the presence of polyoxoanions. In preferred modes, heteropolyoxoanions and isopolyoxoanions containing tungsten, molybdenum and vanadium, individually or in combination, are described. The use of copper as the redox-active metal component shows reduced allylic reactivity. The elimination of chloride from the catalyst system provides substantial engineering advantages over the prior art, particularly, the reduction of corrosion and chloro-organic by-product formation. The use of redox-active metal components and/or ligands makes the palladium-polyoxoanion catalyst system industrially practicable.
    Type: Grant
    Filed: March 31, 1986
    Date of Patent: February 2, 1988
    Assignee: Catalytica Associates
    Inventors: Janis Vasilevskis, Jacques C. De Deken, Robert J. Saxton, Paul R. Wentrcek, Jere D. Fellmann, Lyubov S. Kipnis
  • Patent number: 4720474
    Abstract: The addition of redox-active metal components and ligands, alternatively or simultaneously, results in increased conversion and selectivity in the palladium-catalyzed oxidation of olefins to carbonyl products in the presence of polyoxoanions. In preferred modes, heteropolyoxoanions and isopolyoxoanions containing tungsten, molybdenum and vanadium, individually or in combination, are described. The use of copper as the redox-active metal component shows reduced allylic reactivity. The elimination of chloride from the catalyst system provides substantial engineering advantages over the prior art, particularly, the reduction of corrosion and chloro-organic by-product formation. The use of redox-active metal components and/or ligands makes the palladium-polyoxoanion catalyst system industrially practicable.
    Type: Grant
    Filed: September 24, 1985
    Date of Patent: January 19, 1988
    Assignee: Catalytica Associates
    Inventors: Janis Vasilevskis, Jacques C. De Deken, Robert J. Saxton, Paul R. Wentrcek, Jere D. Fellmann, Lyubov S. Kipnis