Patents by Inventor Paul Row

Paul Row has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160199916
    Abstract: A method for synthesizing ferromagnetic manganese-bismuth (MnBi) nanoparticles, and the MnBi nanoparticles so synthesized, are provided. The method makes use of a novel reagent termed a manganese-based Anionic Element Reagent Complex (Mn-LAERC). A process for forming a bulk MnBi magnet from the synthesized MnBi nanoparticles is also provided. The process involves simultaneous application of elevated temperature and pressure to the nanoparticles.
    Type: Application
    Filed: January 9, 2015
    Publication date: July 14, 2016
    Inventors: Michael Paul Rowe, Elizabeth Marie Skoropata, Yaroslav Stephan Wrocyznskyj, Johan Alexander van Lierop
  • Publication number: 20160200753
    Abstract: A novel ligated reagent complex is provided. The ligated reagent includes at least one zero-valent atom, whether metal, metalloid, or non-metal, in complex with at least one hydride molecule and at least one nitrile compound. The ligated reagent complex can be useful in the synthesis of nanoparticles. Also provided is a method for preparing a ligated reagent complex. The method includes a step of ball-milling a mixture that includes a preparation containing a zero-valent element, a hydride molecule, and a nitrile compound.
    Type: Application
    Filed: January 9, 2015
    Publication date: July 14, 2016
    Inventors: Michael Paul Rowe, Elizabeth Marie Skoropata, Yaroslav Stephan Wrocyznskyj, Johan Alexander van Lierop
  • Patent number: 9390845
    Abstract: Core shell nanoparticles of an iron oxide core, a silicon dioxide shell and an iron silicate interface between the core and the shell are provided. The magnetic properties of the nanoparticles are tunable by control of the iron silicate interface thickness. A magnetic core of high magnetic moment obtained by compression sintering the thermally annealed superparamagnetic core shell nanoparticles is also provided. The magnetic core has little core loss due to hysteresis or eddy current flow.
    Type: Grant
    Filed: June 5, 2014
    Date of Patent: July 12, 2016
    Assignee: Toyota Motor Engineering & Manufacturing North America, Inc.
    Inventors: Michael Paul Rowe, Ryan Daniel Desautels
  • Patent number: 9384878
    Abstract: A novel ferromagnetic composition is provided. The reagent includes at least one zero-valent atom, whether metal, metalloid, or non-metal, in complex with at least one hydride molecule. The composition need not contain any inherently ferromagnetic elements and can be much lighter than conventional iron or other metal-based ferromagnetic materials. Core-solenoid devices having ferromagnetic cores which employ the novel ferromagnetic composition are additionally provided. Examples such as electric motors or generators for use in hybrid or all-electric automobiles are included.
    Type: Grant
    Filed: October 3, 2014
    Date of Patent: July 5, 2016
    Assignee: Toyota Motor Engineering & Manufacturing North America, Inc.
    Inventor: Michael Paul Rowe
  • Patent number: 9346676
    Abstract: A composition and its method of production are provided. The composition includes at least one zero-valent metallic element atom in complex with at least one hydride molecule. The method of production includes ball-milling an elemental metal in a high-surface area form, with a hydride. The composition can be useful as a reagent for the synthesis of zero-valent metallic elemental nanoparticles.
    Type: Grant
    Filed: March 19, 2014
    Date of Patent: May 24, 2016
    Assignee: Toyota Motor Engineering & Manufacturing North America, Inc.
    Inventor: Michael Paul Rowe
  • Publication number: 20160102452
    Abstract: An apparatus for separating a liquid from other substances comprises a first chamber; a second chamber; an inlet connected to the first chamber; an outlet connected to the second chamber; a bypass conduit passing from the inlet, through the first chamber, and into the second chamber; a passage between the first and second chambers and configured to allow the liquid to flow from the first chamber to the second chamber, the passage below the bypass conduit; wherein the bypass conduit comprises a first opening within the first chamber and a second opening in the second chamber; and wherein the bypass conduit is angled relative to a horizontal so that a lowest region of the second opening is higher, in relation to the horizontal, than a highest region of the first opening, such that liquid flow into the inlet, less than a treatment flow rate, flows entirely through the first opening.
    Type: Application
    Filed: December 21, 2015
    Publication date: April 14, 2016
    Applicant: Tec-Kon Enterprises, LLC
    Inventors: Dino Pezzimenti, Paul Rowe, Aaron Rowe, Raymond Cich
  • Patent number: 9296043
    Abstract: Methods for synthesizing metal nanoparticles and the nanoparticles so produced are provided. The methods include addition of surfactant to a novel reagent complex between zero-valent metal and a hydride. The nanoparticles produced by the method include oxide-free, zero-valent tin nanoparticles useful in fabricating a battery electrode.
    Type: Grant
    Filed: October 4, 2013
    Date of Patent: March 29, 2016
    Assignee: Toyota Motor Engineering & Manufacturing North America, Inc.
    Inventors: Michael Paul Rowe, Nikhilendra Singh
  • Patent number: 9281518
    Abstract: Methods for synthesizing metal nanoparticles and the nanoparticles so produced are provided. The methods include addition of surfactant to a novel reagent complex between zero-valent metal and a hydride. The nanoparticles produced by the method include oxide-free, zero-valent tin nanoparticles useful in fabricating a battery electrode.
    Type: Grant
    Filed: March 19, 2014
    Date of Patent: March 8, 2016
    Assignee: Toyota Motor Engineering & Manufacturing North America, Inc.
    Inventors: Nikhilendra Singh, Michael Paul Rowe
  • Patent number: 9278392
    Abstract: Methods for producing nanoparticles of metal alloys and the nanoparticles so produced are provided. The methods include addition of surfactant and cationic metal to a novel reagent complex between zero-valent metal and a hydride. The nanoparticles of zero-valent metal alloys produced by the method include ˜7 nm zero-valent manganese-bismuth useful in fabricating a less expensive permanent magnet.
    Type: Grant
    Filed: October 4, 2013
    Date of Patent: March 8, 2016
    Assignee: Toyota Motor Engineering & Manufacturing North America, Inc.
    Inventors: Michael Paul Rowe, Daniel Jeffrey Herrera
  • Publication number: 20160056362
    Abstract: A thermoelectric material is provided. The material can be a grain boundary modified nanocomposite that has a plurality of bismuth antimony telluride matrix grains and a plurality of zinc oxide nanoparticles within the plurality of bismuth antimony telluride matrix grains. In addition, the material has zinc antimony modified grain boundaries between the plurality of bismuth antimony telluride matrix grains.
    Type: Application
    Filed: July 13, 2012
    Publication date: February 25, 2016
    Applicant: Toyota Motor Engineering & Manufacturing North America, Inc.
    Inventors: Michael Paul Rowe, Li Qin Zhou, Minjuan Zhang, Debasish Banerjee
  • Patent number: 9216910
    Abstract: A composition and its method of production are provided. The composition includes at least one zero-valent metal atom in complex with at least one hydride molecule. In some instances, the composition includes a first zero-valent metal atom and a second zero-valent metal atom in complex with at least one hydride molecule. The method of production includes ball-milling an elemental metal in a high-surface area form, with a hydride. The composition can be useful as a reagent for the synthesis of zero-valent metal alloy nanoparticles.
    Type: Grant
    Filed: March 19, 2014
    Date of Patent: December 22, 2015
    Assignee: Toyota Motor Engineering & Manufacturing North America, Inc.
    Inventor: Michael Paul Rowe
  • Publication number: 20150325347
    Abstract: A method to prepare a core-shell-shell FeCo/SiO2/MnBi nanoparticle wherein the morphology of the MnBi shell is formed by synthesis of the MnBi layer in an applied magnetic field is provided.
    Type: Application
    Filed: May 6, 2014
    Publication date: November 12, 2015
    Applicant: Toyota Motor Engineering & Manufacturing North America, Inc.
    Inventors: Michael Paul Rowe, Ryan Daniel Desautels
  • Patent number: 9142834
    Abstract: Electrodes employing as active material magnesium nanoparticles synthesized by a novel route are provided. The nanoparticle synthesis is facile and reproducible, and provides magnesium nanoparticles of very small dimension and high purity for a wide range of metals. The electrodes utilizing these nanoparticles thus may have superior capability. Magnesium ion electrochemical cells employing said electrodes are also provided.
    Type: Grant
    Filed: July 10, 2014
    Date of Patent: September 22, 2015
    Assignee: Toyota Motor Engineering & Manufacturing North America, Inc.
    Inventors: Rana Mohtadi, Michael Paul Rowe, Ryan Daniel Desautels
  • Publication number: 20150255199
    Abstract: Superparamagnetic core-shell nanoparticles having a core of an iron cobalt ternary alloy, a shell of a silicon oxide on the core and a metal silicate interface layer between the core and the shell layer are provided. Methods to prepare the nanoparticles are also provided.
    Type: Application
    Filed: October 22, 2014
    Publication date: September 10, 2015
    Applicant: TOYOTA MOTOR ENGINEERING & MANUFACTURING NORTH AMERICA, INC.
    Inventors: Michael Paul Rowe, Ryan Daniel Desautels
  • Patent number: 9093205
    Abstract: Thermally annealed superparamagnetic core shell nanoparticles of an iron oxide core and a silicon dioxide shell having high magnetic saturation are provided. A magnetic core of high magnetic moment obtained by compression sintering the thermally annealed superparamagnetic core shell nanoparticles is also provided. The magnetic core has little core loss due to hysteresis or eddy current flow.
    Type: Grant
    Filed: May 23, 2013
    Date of Patent: July 28, 2015
    Assignee: Toyota Motor Engineering & Manufacturing North America, Inc.
    Inventor: Michael Paul Rowe
  • Patent number: 9067833
    Abstract: A magnetic core of superparamagnetic core shell nanoparticles having a particle size of less than 50 nm; wherein the core is an iron oxide and the shell is a silicon oxide is provided. The magnetic core is a monolithic structure of superparamagnetic core grains of iron oxide directly bonded by the silicon dioxide shells. A method to prepare the magnetic core which allows maintenance of the superparamagnetic state of the nanoparticles is also provided. The magnetic core has little core loss due to hysteresis or eddy current flow.
    Type: Grant
    Filed: June 21, 2012
    Date of Patent: June 30, 2015
    Assignee: TOYOTA MOTOR ENGINEERING & MANUFACTURING NORTH AMERICA, INC.
    Inventor: Michael Paul Rowe
  • Patent number: 9028725
    Abstract: A process for densifying a composite material is provided. In some instances, the process can reduce stress in a sintered component such that improved densification and/or properties of the component is provided. The process includes providing a mixture of a first material particles and second material particles, pre-sintering the mixture at a first pressure and a first temperature in order to form a pre-sintered component, and then crushing, grinding, and sieving the pre-sintered component in order to form or obtain a generally uniform composite powder. The uniform composite powder is then sintered at a second pressure and a second temperature to form a sintered component, the second pressure being greater than the second pressure.
    Type: Grant
    Filed: December 7, 2010
    Date of Patent: May 12, 2015
    Assignee: Toyota Motor Engineering & Manufacturing North America, Inc.
    Inventors: Li Qin Zhou, Michael Paul Rowe
  • Publication number: 20150099183
    Abstract: Electrodes employing as active material metal nanoparticles synthesized by a novel route are provided. The nanoparticle synthesis is facile and reproducible, and provides metal nanoparticles of very small dimension and high purity for a wide range of metals. The electrodes utilizing these nanoparticles thus may have superior capability. Electrochemical cells employing said electrodes are also provided.
    Type: Application
    Filed: March 19, 2014
    Publication date: April 9, 2015
    Applicant: Toyota Motor Engineering & Manufacturing North America, Inc.
    Inventors: Nikhilendra Singh, Michael Paul Rowe
  • Publication number: 20150098882
    Abstract: A composition and its method of production are provided. The composition includes at least one zero-valent metallic element atom in complex with at least one hydride molecule. The method of production includes ball-milling an elemental metal in a high-surface area form, with a hydride. The composition can be useful as a reagent for the synthesis of zero-valent metallic elemental nanoparticles.
    Type: Application
    Filed: March 19, 2014
    Publication date: April 9, 2015
    Applicant: Toyota Motor Engineering & Manufacturing North America, Inc.
    Inventor: Michael Paul Rowe
  • Publication number: 20150096887
    Abstract: Electrodes employing as active material iridium nanoparticles synthesized by a novel route are provided. The nanoparticle synthesis is facile and reproducible, and provides iridium nanoparticles of very small dimension and high purity for a wide range of metals. The electrodes utilizing these nanoparticles have excellent efficiency catalyzing the electrolytic production of oxygen from water.
    Type: Application
    Filed: July 10, 2014
    Publication date: April 9, 2015
    Inventors: Kenneth J. McDonald, Michael Paul Rowe