Patents by Inventor Paul Rowe

Paul Rowe has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11041576
    Abstract: Actuators having electroactive valves are described herein. The actuators can move from a first position to a second position and lock in the second position using an electroactive valve. The device can include an actuator having a fluid-impermeable membrane. The fluid-impermeable membrane can define a compartment, the compartment having a central region, an edge region extending from and fluidly connected with the central region, an electroactive valve between the central region and the edge region, and a dielectric fluid. When actuated, the actuators can force fluid through the electroactive valves and into the edge region. Once in the edge region, the electroactive valves can prevent return flow until receiving an actuation signal.
    Type: Grant
    Filed: October 25, 2018
    Date of Patent: June 22, 2021
    Assignee: Toyota Motor Engineering & Manufacturing North America, Inc.
    Inventors: Umesh N. Gandhi, Danil V. Prokhorov, Michael Paul Rowe, Ryohei Tsuruta
  • Patent number: 10984933
    Abstract: Thermally annealed superparamagnetic core shell nanoparticles of an iron-cobalt ternary alloy core and a silicon dioxide shell having high magnetic saturation are provided. A magnetic core of high magnetic moment obtained by compression sintering the thermally annealed superparamagnetic core shell nanoparticles is also provided. The magnetic core has little core loss due to hysteresis or eddy current flow.
    Type: Grant
    Filed: June 19, 2013
    Date of Patent: April 20, 2021
    Assignee: Toyota Motor Engineering & Manufacturing North America, Inc.
    Inventor: Michael Paul Rowe
  • Patent number: 10975457
    Abstract: A magnetic core of superparamagnetic core shell nanoparticles having a particle size of less than 200 nm; wherein the core is an iron cobalt ternary alloy and the shell is a silicon oxide is provided. The magnetic core is a monolithic structure of superparamagnetic core grains of an iron cobalt ternary alloy directly bonded by the silicon dioxide shells. A method to prepare the magnetic core which allows maintenance of the superparamagnetic state of the nanoparticles is also provided. The magnetic core has little core loss due to hysteresis or eddy current flow.
    Type: Grant
    Filed: August 2, 2012
    Date of Patent: April 13, 2021
    Assignee: Toyota Motor Engineering & Manufacturing North America, Inc.
    Inventor: Michael Paul Rowe
  • Patent number: 10946535
    Abstract: The soft bodied structures and systems for controlling such devices are described herein. The soft bodied structures can move from a first position to a second position by an earthworm-like motion. The system can include connecting to a first contact point of the surface using a surface attachment. The medial region can include one or more spacer regions. The medial actuators can be actuated to expand the exterior medial surface at the spacer regions, thus moving the unattached end portion forward. The device can then attach to a second contact point using the surface attachment and the end portion actuator of the unattached end portion. Then, the surface attachment of the first attached end portion can detach. The medial actuators and the spacer regions can then relax, followed by detaching the surface attachment of the second attached end portion.
    Type: Grant
    Filed: October 25, 2018
    Date of Patent: March 16, 2021
    Assignee: Toyota Motor Engineering & Manufacturing North America, Inc.
    Inventors: Umesh N. Gandhi, Danil V. Prokhorov, Michael Paul Rowe, Ryohei Tsuruta
  • Patent number: 10926002
    Abstract: Orthopedic replacements include are formed at least partially of composite materials including a metal matrix with reinforcing carbon fiber integrated into the matrix. The composite materials have substantially lower density than metal, and are expected to have appreciable strength. The orthopedic replacements can include a bone attachment portion and a load bearing portion. In some versions, the orthopedic replacements can include a core formed of the composite material, with a shape completion portion, formed for example from plastic, at least partially coating the core.
    Type: Grant
    Filed: December 21, 2018
    Date of Patent: February 23, 2021
    Assignee: Toyota Motor Engineering & Manufacturing North America, Inc.
    Inventor: Michael Paul Rowe
  • Patent number: 10913413
    Abstract: System, methods, and other embodiments described herein relate to automatically adjusting a climate of a vehicle based on detecting the type of clothing a vehicle occupant is wearing. In one embodiment, the method includes, in response to acquiring an identifier from a reader, where the identifier being associated with a tag affixed to a wearable article in proximity of the reader, determining a type of the wearable article based on the identifier. The method includes controlling a climate control system based at least in part on the type of the wearable article.
    Type: Grant
    Filed: December 4, 2018
    Date of Patent: February 9, 2021
    Assignee: Toyota Motor Engineering & Manufacturing North America, Inc.
    Inventor: Michael Paul Rowe
  • Patent number: 10910153
    Abstract: Thermally annealed superparamagnetic core shell nanoparticles of an iron-cobalt alloy core and a silicon dioxide shell having high magnetic saturation are provided. A magnetic core of high magnetic moment obtained by compression sintering the thermally annealed superparamagnetic core shell nanoparticles is also provided. The magnetic core has little core loss due to hysteresis or eddy current flow.
    Type: Grant
    Filed: July 15, 2013
    Date of Patent: February 2, 2021
    Assignees: Toyota Motor Engineering & Manufacturing North America, Inc., Toyota Jidosha Kabushiki Kaisha
    Inventors: Michael Paul Rowe, Sean Evan Sullivan, Daisuke Okamoto
  • Publication number: 20200398533
    Abstract: Composite materials include a steel matrix with structural aramid formed of individual fibers penetrating into the matrix at substantial depth. The fibers typically have defined diameters and large ratios of penetration depth to fiber diameter. Specified methods for forming the composite materials have a unique ability to achieve the large ratios of penetration depth to fiber diameter.
    Type: Application
    Filed: August 31, 2020
    Publication date: December 24, 2020
    Inventor: Michael Paul Rowe
  • Publication number: 20200392305
    Abstract: Composite materials include a steel matrix with structural aramid integrated into, and passing through an entirety of, the matrix. The composite materials have substantially lower density than steel, and are expected to have appreciable strength. Methods for forming composite steel composites includes combining a structural aramid component, such as a woven polymer, with steel nanoparticles and sintering the steel nanoparticles in order to form a steel matrix with structural aramid integrated therein.
    Type: Application
    Filed: August 28, 2020
    Publication date: December 17, 2020
    Inventor: Michael Paul Rowe
  • Patent number: 10857504
    Abstract: A co-catalyst system for the removal of NOx from an exhaust gas stream has a layered oxide and a spinel of formula Ni0.15Co0.85CoAlO4. The system converts to nitric oxide to nitrogen gas with high product specificity. The layered oxide is configured to convert NOx in the exhaust gas stream to an N2O intermediate, and the spinel is configured to convert the N2O intermediate to N2.
    Type: Grant
    Filed: June 10, 2019
    Date of Patent: December 8, 2020
    Assignee: Toyota Motor Engineering & Manufacturing North America, Inc.
    Inventors: Torin C. Peck, Michael Paul Rowe, Michael Jones
  • Patent number: 10859101
    Abstract: A soft-bodied actuator can be configured to be in a pinched or contracted configuration when power is not supplied to the actuator. Thus, a supply of electrical energy is not needed to maintain the actuator in the pinched or contracted configuration. The actuator can include a central bladder. The central bladder can include a flexible casing that defines a central fluid chamber. The central fluid chamber can include a dielectric fluid. A first conductor and a second conductor can be operatively connected to opposite portions of the central bladder. The actuator can be configured such that, in the activated mode, the first and second conductors receive electrical energy from a power source such that they are like charged, causing the first and second conductors to repel each other. The central fluid chamber can include a particulate material to help maintain the central bladder in the pinched configuration.
    Type: Grant
    Filed: December 10, 2018
    Date of Patent: December 8, 2020
    Assignee: Toyota Motor Engineering & Manufacturing North America, Inc.
    Inventor: Michael Paul Rowe
  • Publication number: 20200346284
    Abstract: Carbon fiber reinforced steel matrix composites have carbon fiber impregnated in the steel matrix and chemically bonded to the steel. Chemical bonding is shown by the presence of a unique amorphous carbon layer at the carbon fiber/steel interface, and by canting of steel crystal edges adjacent to the interface. Methods for forming carbon fiber reinforce steel composites include sintering steel nanoparticles around a reinforcing carbon fiber structure, thereby chemically bonding a sintered steel matrix to the carbon fiber. This unique bonding likely contributes to enhanced strength of the composite, in comparison to metal matrix composites formed by other methods.
    Type: Application
    Filed: July 20, 2020
    Publication date: November 5, 2020
    Inventors: Michael Paul Rowe, Nikhilendra Singh
  • Patent number: 10814397
    Abstract: A method for synthesizing a reagent complex includes a step of ball-milling a mixture that includes: a powder of a zero-valent element; a hydride molecule; and a nitrile ligand. The method produces a reagent complex having a formula Q0.Xy.Lz, where Q0 is the zero-valent element, X is the hydride molecule, and L is the nitrile ligand. A process for synthesizing nanoparticles composed of the zero-valent element includes a step of adding solvent to the reagent complex. Crystal texture of the nanoparticles is modulated by appropriate selection of the molar ratio nitrile ligand in the reagent complex.
    Type: Grant
    Filed: March 21, 2016
    Date of Patent: October 27, 2020
    Assignees: Toyota Motor Engineering & Manufacturing North America, Inc., The University of Manitoba
    Inventors: Elizabeth Marie Skoropata, Michael Paul Rowe, Johan Alexander van Lierop
  • Publication number: 20200299468
    Abstract: Composite materials include a steel matrix with reinforcing carbon fiber integrated into the matrix. The composite materials have substantially lower density than steel, and are expected to have appreciable strength. Methods for forming composite steel composites includes combining a reinforcing carbon fiber component, such as a woven polymer, with steel nanoparticles and sintering the steel nanoparticles in order to form a steel matrix with reinforcing carbon fiber integrated therein.
    Type: Application
    Filed: March 20, 2020
    Publication date: September 24, 2020
    Inventor: Michael Paul Rowe
  • Publication number: 20200299817
    Abstract: Composite materials include a steel matrix with reinforcing carbon fiber integrated into the matrix, and having unreinforced regions suitable for stamping or other deformation. The composite materials have substantially lower density than steel, and are expected to have appreciable strength within regions having the reinforcing carbon fiber, while having greater deformability in unreinforced regions. Methods for forming composite steel composites includes combining at least two laterally spaced apart reinforcing carbon fiber components, such as a carbon fiber weave, with steel nanoparticles and sintering the steel nanoparticles in order to form a steel matrix with reinforcing carbon fiber integrated therein, and unreinforced regions located in the lateral spaces between carbon fiber components.
    Type: Application
    Filed: March 20, 2020
    Publication date: September 24, 2020
    Inventor: Michael Paul Rowe
  • Publication number: 20200298528
    Abstract: Composite materials include a steel matrix with reinforcing carbon fiber formed of individual fibers penetrating into the matrix to substantial depth. The fibers typically have defined diameters and large ratios of penetration depth to fiber diameter. Specified methods for forming the composite materials have a unique ability to achieve the large ratios of penetration depth to fiber diameter.
    Type: Application
    Filed: March 20, 2020
    Publication date: September 24, 2020
    Inventor: Michael Paul Rowe
  • Publication number: 20200291201
    Abstract: Composite materials include a steel matrix with structural polymer integrated into the matrix. The composite materials have substantially lower density than steel, and are expected to have appreciable strength. Methods for forming composite steel composites includes combining a structural polymer component, such as a woven polymer, with steel nanoparticles and sintering the steel nanoparticles in order to form a steel matrix with structural polymer integrated therein.
    Type: Application
    Filed: May 29, 2020
    Publication date: September 17, 2020
    Inventor: Michael Paul Rowe
  • Patent number: 10774196
    Abstract: Composite materials include a steel matrix with structural polymer integrated into the matrix. The composite materials have substantially lower density than steel, and are expected to have appreciable strength. Methods for forming composite steel composites includes combining a structural polymer component, such as a woven polymer, with steel nanoparticles and sintering the steel nanoparticles in order to form a steel matrix with structural polymer integrated therein.
    Type: Grant
    Filed: September 22, 2016
    Date of Patent: September 15, 2020
    Assignee: Toyota Motor Engineering & Manufacturing North America, Inc.
    Inventor: Michael Paul Rowe
  • Publication number: 20200277466
    Abstract: Composite materials include a steel matrix with structural polymer integrated into the matrix. The composite materials have substantially lower density than steel, and are expected to have appreciable strength. Methods for forming composite steel composites includes combining a structural polymer component, such as a woven polymer, with steel nanoparticles and sintering the steel nanoparticles in order to form a steel matrix with structural polymer integrated therein.
    Type: Application
    Filed: May 12, 2020
    Publication date: September 3, 2020
    Inventor: Michael Paul Rowe
  • Patent number: 10746206
    Abstract: An actuator includes a first enclosure, a dielectric fluid in the first enclosure, and a second enclosure in fluid communication with the first enclosure. An elastic membrane defines at least a portion of the second enclosure. A first electrical conductor is positioned along a first side of the first enclosure. A second electrical conductor is positioned along a second side of the first enclosure opposite the first side. The second conductor is spaced apart from the first conductor. The conductors are connected to a power source. Application of electrical energy to the first and second conductors produces an attractive force between the conductors. Motion of the conductors toward each other pressurizes the dielectric fluid so as to force the dielectric fluid to flow from the first enclosure into the second enclosure. The flow of the dielectric fluid exerts a force on the elastic membrane which expands the elastic membrane.
    Type: Grant
    Filed: February 7, 2019
    Date of Patent: August 18, 2020
    Assignee: Toyota Motor Engineering & Manufacturing North America, Inc.
    Inventors: Michael Paul Rowe, Jillian M. Jakubiec