Patents by Inventor Paul S. Hsu

Paul S. Hsu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11967561
    Abstract: A fabric-based item may include fabric layers and other layers of material. An array of electrical components may be mounted in the fabric-based item. The electrical components may be mounted to a support structure such as a flexible printed circuit. The flexible printed circuit may have a mesh shape formed from an array of openings. Serpentine flexible printed circuit segments may extend between the openings. The electrical components may be light-emitting diodes or other electrical devices. Polymer with light-scattering particles or other materials may cover the electrical components. The flexible printed circuit may be laminated between fabric layers or other layers of material in the fabric-based item.
    Type: Grant
    Filed: June 6, 2023
    Date of Patent: April 23, 2024
    Assignee: Apple Inc.
    Inventors: Daniel D. Sunshine, Paul S. Drzaic, Daniel A. Podhajny, David M. Kindlon, Hoon Sik Kim, Kathryn P. Crews, Yung-Yu Hsu
  • Patent number: 11499872
    Abstract: Systems and methods for measuring temperature in an environment by creating a first beam having an energy of about 50 mJ/pulse, and a pulse duration of about 100 ps. A second beam is also created, having an energy of about 2.3 mJ/pulse, and a pulse duration of about 58 ps. The first beam and the second beam are directed into a probe region, thereby expressing an optical output. Properties of the optical output are measured at a sampling rate of at least about 100 kHz, and temperature measurements are derived from the measured properties of the optical output. Such systems and methods can be used to measure temperature in environments exhibiting highly turbulent and transient flow dynamics.
    Type: Grant
    Filed: November 18, 2020
    Date of Patent: November 15, 2022
    Assignee: United States of America as represented by the Secretary of the Air Force
    Inventors: James R. Gord, Sukesh Roy, Paul S. Hsu, Naibo Jiang, Mikhail N. Slipchenko
  • Patent number: 11177622
    Abstract: A low-repetition-rate (10-Hz), picosecond (ps) optical parametric generator (OPG) system produces higher energy output levels in a more robust and reliable system than previously available. A picosecond OPG stage is seeded at an idler wavelength with a high-power diode laser and its output at ˜566 nm is amplified in a pulsed dye amplifier (PDA) stage having two dye cells, resulting in signal enhancement by more than three orders of magnitude. The nearly transform-limited beam at ˜566 nm has a pulse width of ˜170 ps with an overall output of ˜2.3 mJ/pulse. A spatial filter between the OPG and PDA stages and a pinhole between the two dye cells improve high output beam quality and enhances coarse and fine wavelength tuning capability.
    Type: Grant
    Filed: July 23, 2012
    Date of Patent: November 16, 2021
    Assignee: United States of America as represented by the Secretary of the Air Force
    Inventors: James R. Gord, Paul S Hsu, Sukesh Roy
  • Publication number: 20210164841
    Abstract: Systems and methods for measuring temperature in an environment by creating a first beam having an energy of about 50 mJ/pulse, and a pulse duration of about 100 ps. A second beam is also created, having an energy of about 2.3 mJ/pulse, and a pulse duration of about 58 ps. The first beam and the second beam are directed into a probe region, thereby expressing an optical output. Properties of the optical output are measured at a sampling rate of at least about 100 kHz, and temperature measurements are derived from the measured properties of the optical output. Such systems and methods can be used to measure temperature in environments exhibiting highly turbulent and transient flow dynamics.
    Type: Application
    Filed: November 18, 2020
    Publication date: June 3, 2021
    Inventors: James R. Gord, Sukesh Roy, Paul S. Hsu, Naibo Jiang, Mikhail N. Slipchenko
  • Patent number: 10876900
    Abstract: Systems and methods for measuring temperature in an environment by creating a first beam having an energy of about 50 mJ/pulse, and a pulse duration of about 100 ps. A second beam is also created, having an energy of about 2.3 mJ/pulse, and a pulse duration of about 58 ps. The first beam and the second beam are directed into a probe region, thereby expressing an optical output. Properties of the optical output are measured at a sampling rate of at least about 100 kHz, and temperature measurements are derived from the measured properties of the optical output. Such systems and methods can be used to measure temperature in environments exhibiting highly turbulent and transient flow dynamics.
    Type: Grant
    Filed: August 2, 2018
    Date of Patent: December 29, 2020
    Inventors: James R. Gord, Sukesh Roy, Paul S. Hsu, Naibo Jiang, Mikhail N. Slipchenko
  • Publication number: 20180252868
    Abstract: A laser ignition system. The system includes a laser, a lens, and a fiber optic cable. The laser is configured to generate pulses having a length ranging from about 10 ns to about 30 ns and pulse energy ranging from about 10 mJ to about 20 mJ. A pulse train may comprise a plurality of the pulses with a repetition rate of greater than 10 kHz. The lens is configured to focus the pulses toward a combustible fluid so as to ignite a plasma. The fiber optic cable extends between the laser and the lens.
    Type: Application
    Filed: March 2, 2018
    Publication date: September 6, 2018
    Applicant: Government of the United States as Represented by the Secretary of the Air Force
    Inventors: James R. Gord, Sukesh Roy, Paul S. Hsu, Zhili Zhang