Patents by Inventor Paul S. Krueger

Paul S. Krueger has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230131080
    Abstract: A reduced drag surface involves a perforated or porous surface exposed to a flowing fluid and a slip interface disposed between the surface and the flowing fluid, wherein the slip interface is formed from an entrapped fluid trapped at the surface. A method for modifying a drag coefficient on a reduced drag surface involves the steps of supplying a fluid to a perforated or porous surface exposed to a flowing fluid, wherein the surface traps the fluid at the surface to form an entrapped fluid and forming a slip interface between the surface and the flowing fluid, wherein the slip interface is formed from the entrapped fluid. An apparatus for a reduced drag surface includes the reduced drag surface described above and a source of fluid fluidically coupled to the surface such that the source supplied fluid to the surface to form the entrapped fluid.
    Type: Application
    Filed: October 27, 2022
    Publication date: April 27, 2023
    Inventors: Paul S. Krueger, David A. Willis, Haosen Tan, Denise Cox
  • Publication number: 20200284219
    Abstract: A method of producing a pulsatile jet flow from a substantially constant flow primary jet in a way that is mechanically efficient, easy to implement, and allows direct control over pulse duration and pulsing frequency is disclosed herein. The invention includes at least two components: (a) a constant flow fluid jet produced by any normal method (e.g., propeller) that can be directionally vectored fluidically, mechanically, or electromagnetically and (b) a nozzle with multiple outlets (orifices) through which the vectored jet may be directed. By alternately vectoring the jet through different outlets, a transient (pulsatile) flow at an outlet is obtained even with a substantially constant primary jet flow. Additionally, the nozzle outlets may be oriented in different directions to provide thrust vectoring, making the invention useful for maneuvering, directional control, etc.
    Type: Application
    Filed: May 26, 2020
    Publication date: September 10, 2020
    Inventor: Paul S. Krueger
  • Patent number: 10697395
    Abstract: A method of producing a pulsatile jet flow from a substantially constant flow primary jet in a way that is mechanically efficient, easy to implement, and allows direct control over pulse duration and pulsing frequency is disclosed herein. The invention includes at least two components: (a) a constant flow fluid jet produced by any normal method (e.g., propeller) that can be directionally vectored fluidically, mechanically, or electromagnetically and (b) a nozzle with multiple outlets (orifices) through which the vectored jet may be directed. By alternately vectoring the jet through different outlets, a transient (pulsatile) flow at an outlet is obtained even with a substantially constant primary jet flow. Additionally, the nozzle outlets may be oriented in different directions to provide thrust vectoring, making the invention useful for maneuvering, directional control, etc.
    Type: Grant
    Filed: July 10, 2015
    Date of Patent: June 30, 2020
    Assignee: Southern Methodist University
    Inventor: Paul S. Krueger
  • Publication number: 20150315998
    Abstract: A method of producing a pulsatile jet flow from a substantially constant flow primary jet in a way that is mechanically efficient, easy to implement, and allows direct control over pulse duration and pulsing frequency is disclosed herein. The invention includes at least two components: (a) a constant flow fluid jet produced by any normal method (e.g., propeller) that can be directionally vectored fluidically, mechanically, or electromagnetically and (b) a nozzle with multiple outlets (orifices) through which the vectored jet may be directed. By alternately vectoring the jet through different outlets, a transient (pulsatile) flow at an outlet is obtained even with a substantially constant primary jet flow. Additionally, the nozzle outlets may be oriented in different directions to provide thrust vectoring, making the invention useful for maneuvering, directional control, etc.
    Type: Application
    Filed: July 10, 2015
    Publication date: November 5, 2015
    Inventor: Paul S. Krueger
  • Patent number: 9108711
    Abstract: A method of producing a pulsatile jet flow from a substantially constant flow primary jet in a way that is mechanically efficient, easy to implement, and allows direct control over pulse duration and pulsing frequency is disclosed herein. The invention includes at least two components: (a) a constant flow fluid jet produced by any normal method (e.g., propeller) that can be directionally vectored fluidically, mechanically, or electromagnetically and (b) a nozzle with multiple outlets (orifices) through which the vectored jet may be directed. By alternately vectoring the jet through different outlets, a transient (pulsatile) flow at an outlet is obtained even with a substantially constant primary jet flow. Additionally, the nozzle outlets may be oriented in different directions to provide thrust vectoring, making the invention useful for maneuvering, directional control, etc.
    Type: Grant
    Filed: March 18, 2010
    Date of Patent: August 18, 2015
    Assignee: SOUTHERN METHODIST UNIVERSITY
    Inventor: Paul S. Krueger
  • Patent number: 7949492
    Abstract: Measuring mechanical propulsive power includes establishing a first power and a second power. The first power is associated with a first rate of energy conversion by a device in a fluid, where the device is in the wake of a self-propelled conveyance moving with respect to the fluid. The average distance between the device and self-propelled conveyance may remain substantially unchanged. The second power is associated with a second rate of energy conversion by the device in the fluid without the self-propelled conveyance, where the other physical factors are substantially similar to that associated with the first power. The difference between the first power and the second power is calculated. The mechanical propulsive power for the self-propelled conveyance is determined using mappings, where a mapping associates the difference with the mechanical propulsive power.
    Type: Grant
    Filed: June 19, 2007
    Date of Patent: May 24, 2011
    Assignee: Southern Methodist University
    Inventors: Paul S. Krueger, Christian Naaktgeboren
  • Publication number: 20100237165
    Abstract: A method of producing a pulsatile jet flow from a substantially constant flow primary jet in a way that is mechanically efficient, easy to implement, and allows direct control over pulse duration and pulsing frequency is disclosed herein. The invention includes at least two components: (a) a constant flow fluid jet produced by any normal method (e.g., propeller) that can be directionally vectored fluidically, mechanically, or electromagnetically and (b) a nozzle with multiple outlets (orifices) through which the vectored jet may be directed. By alternately vectoring the jet through different outlets, a transient (pulsatile) flow at an outlet is obtained even with a substantially constant primary jet flow. Additionally, the nozzle outlets may be oriented in different directions to provide thrust vectoring, making the invention useful for maneuvering, directional control, etc.
    Type: Application
    Filed: March 18, 2010
    Publication date: September 23, 2010
    Applicant: SOUTHERN METHODIST UNIVERSITY
    Inventor: Paul S. Krueger
  • Publication number: 20070299629
    Abstract: Measuring mechanical propulsive power includes establishing a first power and a second power. The first power is associated with a first rate of energy conversion by a device in a fluid, where the device is in the wake of a self-propelled conveyance moving with respect to the fluid. The average distance between the device and self-propelled conveyance may remain substantially unchanged. The second power is associated with a second rate of energy conversion by the device in the fluid without the self-propelled conveyance, where the other physical factors are substantially similar to that associated with the first power. The difference between the first power and the second power is calculated. The mechanical propulsive power for the self-propelled conveyance is determined using mappings, where a mapping associates the difference with the mechanical propulsive power.
    Type: Application
    Filed: June 19, 2007
    Publication date: December 27, 2007
    Inventors: Paul S. Krueger, Christian Naaktgeboren
  • Publication number: 20030209006
    Abstract: A pump augmentation uses a nozzle output which is controlled in pulses to produce vortex rings and is controlled such that 1 F = Formation ⁢   ⁢ Number = m ρ ⁢   ⁢ A ⁢   ⁢ D = U ⁢   ⁢ t D
    Type: Application
    Filed: January 27, 2003
    Publication date: November 13, 2003
    Applicant: California Institute of Technology
    Inventors: Mory Gharib, Paul S. Krueger