Patents by Inventor Paul S. Northrop

Paul S. Northrop has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9149761
    Abstract: A gas processing facility and method for processing a hydrocarbon gas stream comprising sulfurous components and carbon dioxide. The gas processing facility includes an acid gas removal facility for separating the hydrocarbon gas stream into (i) a sweetened gas stream, and (ii) an acid gas stream comprised primarily of hydrogen sulfide and carbon dioxide. The gas processing facility also includes a Claus sulfur recovery unit that generates a tail gas, and a tail gas treating unit for receiving the tail gas. In various embodiments, the gas processing facility and method capture CO2 from the tail gas and injects it under pressure into a subsurface reservoir.
    Type: Grant
    Filed: November 30, 2010
    Date of Patent: October 6, 2015
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Paul S Northrop, Robbin Bruce Anderson
  • Patent number: 8899557
    Abstract: Provided are gas processing facilities for the separation of components in a gas stream and methods of using the same. The facility includes one or more co-current contactors. Each contactor includes a mass transfer vessel having a mixing section. The mixing section receives a gas stream and a liquid contacting stream. The mixing section mixes theses two streams and releases a two-phase flow. Each contactor also includes a separator that receives the two-phase fluid stream from the mass transfer vessel in-line, and then separates a vapor phase from a liquid phase. The separator has a gas-phase outlet configured to release the vapor phase as a treated gas stream, and a liquid-phase outlet configured to release the liquid phase as a loaded treating solution. The contactors may be used to remove water or other contaminant from a natural gas stream or other gas stream.
    Type: Grant
    Filed: July 22, 2011
    Date of Patent: December 2, 2014
    Assignee: ExxonMobil Upstream Research Company
    Inventors: John T Cullinane, Edward J Grave, Paul S. Northrop
  • Patent number: 8545602
    Abstract: The removal of one or more of the gases CO2, N2 and H2S from gas mixtures containing at least one of said gases with use of an 8-ring zeolite having a Si:Al ratio from about 1:1 to about 1000:1. The preferred gas mixture is a natural gas feedstream and the preferred 8-ring zeolite is DDR.
    Type: Grant
    Filed: April 4, 2008
    Date of Patent: October 1, 2013
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Ronald R. Chance, Sebastian C. Reyes, Harry W. Deckman, Gregory J. DeMartin, Bruce T. Kelley, Paul S. Northrop, Eugene R. Thomas
  • Patent number: 8529662
    Abstract: A process for the separation of one or more heavy hydrocarbon gases from a gas mixture containing heavy hydrocarbon gas components and methane. The process is conducted in swing adsorption apparatus containing adsorbent contactor having a plurality of flow channels and wherein 20 volume percent or less of the open pore volume of the contactors, is in the mesopore and macropore range.
    Type: Grant
    Filed: April 4, 2008
    Date of Patent: September 10, 2013
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Bruce T. Kelley, Paul S. Northrop, Ronald R. Chance, Harry W. Deckman, Edward W. Corcoran, Jr., Eugene R. Thomas
  • Patent number: 8529663
    Abstract: The present invention relates the separation of a target gas from a mixture of gases through the use of engineered structured adsorbent contactors in pressure swing adsorption and thermal swing adsorption processes. Preferably, the contactors contain engineered and substantially parallel flow channels wherein 20 volume percent or less of the open pore volume of the contactor, excluding the flow channels, is in the mesopore and macropore range.
    Type: Grant
    Filed: April 4, 2008
    Date of Patent: September 10, 2013
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Sebastian C. Reyes, Harry W. Deckman, Ronald R. Chance, Gregory J. DeMartin, Frank Hershkowitz, Eugene R. Thomas, Paul S. Northrop, Bruce T. Kelley, Edward W. Corcoran, Jr.
  • Patent number: 8529664
    Abstract: The separation of a target gas selected from a high pressure gas mixture containing said target gas as well as a product gas using a swing adsorption process unit. A turboexpander is used upstream of the swing adsorber to reduce the pressure of the high pressure gas mixture. A compressor is optionally used downstream of the swing adsorber to increase the pressure of the target gas-containing stream for injecting into a subterranean formation.
    Type: Grant
    Filed: May 16, 2008
    Date of Patent: September 10, 2013
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Harry W. Deckman, Bruce T. Kelley, Eugene R. Thomas, Ronald R. Chance, Paul S. Northrop, Edward W. Corcoran, Jr.
  • Patent number: 8444750
    Abstract: The present invention relates to the separation of one or more of CO2, N2, and H2S gas components from a gas mixture containing at least a second gas using a swing adsorption process unit. The adsorbent contactors of the swing adsorption process unit are engineered structured adsorbent contactors having a plurality of flow channels wherein 20 volume percent or less of the open pore volume of the contactors is in the mesopore and macropore range.
    Type: Grant
    Filed: April 4, 2008
    Date of Patent: May 21, 2013
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Harry W. Deckman, Ronald R. Chance, Sebastian C. Reyes, Gregory J. DeMartin, Eugene R. Thomas, Paul S. Northrop, Bruce T. Kelley, Edward W. Corcoran, Jr.
  • Publication number: 20120279728
    Abstract: A gas processing facility for processing a hydrocarbon gas stream is provided. The hydrocarbon gas stream comprises sulfurous components and carbon dioxide. The gas processing facility includes an acid gas removal facility for separating the hydrocarbon gas stream into (i) a sweetened gas stream, and (ii) an acid gas stream comprised primarily of hydrogen sulfide and carbon dioxide. The gas processing facility also includes a Claus sulfur recovery unit that generates a tail gas, and a tail gas treating unit for receiving the tail gas. In various embodiments, the gas processing facility captures CO2 from the tail gas and injects it under pressure into a subsurface reservoir. A method for processing a hydrocarbon gas stream such that additional CO2 is captured and injected into a subsurface reservoir is also provided.
    Type: Application
    Filed: November 30, 2010
    Publication date: November 8, 2012
    Inventors: Paul S. Northrop, Robbin Bruce Anderson
  • Publication number: 20120238793
    Abstract: Provided are gas processing facilities for the separation of components in a gas stream and methods of using the same. The facility includes one or more co-current contactors. Each contactor includes a mass transfer vessel having a mixing section. The mixing section receives a gas stream and a liquid contacting stream. The mixing section mixes theses two streams and releases a two-phase flow. Each contactor also includes a separator that receives the two-phase fluid stream from the mass transfer vessel in-line, and then separates a vapor phase from a liquid phase. The separator has a gas-phase outlet configured to release the vapor phase as a treated gas stream, and a liquid-phase outlet configured to release the liquid phase as a loaded treating solution. The contactors may be used to remove water or other contaminant from a natural gas stream or other gas stream.
    Type: Application
    Filed: July 22, 2011
    Publication date: September 20, 2012
    Inventors: John T. Cullinane, Edward J. Grave, Paul S. Northrop
  • Patent number: 8133302
    Abstract: The present invention relates to a process for the removal of sulfur contaminants from a hydrocarbon stream comprising: (a) providing a gaseous hydrocarbon stream having sulfur contaminants, but having less than 10 ppmw of said sulfur contaminants as thiophenes, to a bed of adsorbent material, said material having at least one Group VIII metal compound with at least one Group VI, IA, IIA, IB metal compound on an inorganic metal oxide support material, without substantial added hydrogen, to absorb said contaminants; (b) periodically stopping said providing of said gaseous hydrocarbon feed stream of (a); (c) then, regenerating said adsorbent bed by introducing at least one regenerant, in any order, in the place of said stream; and, (d) continuing to alternate (a) and (b) plus (c) as needed.
    Type: Grant
    Filed: April 25, 2008
    Date of Patent: March 13, 2012
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Paul S. Northrop, Narasimhan Sundaram
  • Patent number: 7947120
    Abstract: The adsorption of CO2 from flue gas streams using temperature swing adsorption. Adsorbent contactors are used in the temperature swing adsorption unit that contain a plurality of substantially parallel channels comprised of or coated with an adsorbent material that is selective for adsorbing CO2 from flue gas.
    Type: Grant
    Filed: May 16, 2008
    Date of Patent: May 24, 2011
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Harry W. Deckman, Bruce T. Kelley, Frank Hershkowitz, Ronald R. Chance, Paul S. Northrop, Edward W. Corcoran, Jr.
  • Patent number: 7938886
    Abstract: The separation of a target gas from a mixture of gases using a thermal swing adsorption process wherein a thermal wave is used, primarily in the desorption step. The process of this invention enables one to separately remove multiple contaminants from a treated gaseous stream.
    Type: Grant
    Filed: May 16, 2008
    Date of Patent: May 10, 2011
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Frank Hershkowitz, Harry W. Deckman, Paul S. Northrop, Bruce T. Kelley
  • Publication number: 20100230296
    Abstract: The described invention is a process for producing hydrogen gas comprising (a) combusting sulfur (S) or hydrogen sulfide (H2S) with oxygen (O2) to obtain sulfur dioxide (SO2) and water (H2O), plus heat; (b) adding water to the product of (a) to obtain a sulfurous acid solution (H2SO3 and H2O); (c) applying electrical current to the sulfurous acid solution of (b) to obtain sulfuric acid (H2SO4) and hydrogen gas (H2); and, (d) using gas-liquid separation to separate the sulfuric acid from the hydrogen gas to obtain separated components of the sulfuric acid and the hydrogen gas; and, wherein the heat generated in (a) is used to generate at least a portion of the electricity for the electrical current of (c).
    Type: Application
    Filed: June 17, 2008
    Publication date: September 16, 2010
    Inventor: Paul S. Northrop
  • Patent number: 7731782
    Abstract: Adsorption of CO2 from flue gas streams using temperature swing adsorption. The resulting CO2 rich stream is compressed for sequestration into a subterranean formation and at least a portion of the heat of compression is used in the desorption step of the temperature swing adsorption process.
    Type: Grant
    Filed: May 16, 2008
    Date of Patent: June 8, 2010
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Bruce T. Kelley, Harry W. Deckman, Frank Hershkowitz, Paul S. Northrop, Peter I. Ravikovitch
  • Publication number: 20100121126
    Abstract: The present invention relates to a process for the removal of sulfur contaminants from a hydrocarbon stream comprising: (a) providing a gaseous hydrocarbon stream having sulfur contaminants, but having less than 10 ppmw of said sulfur contaminants as thiophenes, to a bed of adsorbent material, said material having at least one Group VIII metal compound with at least one Group VI, IA, IIA, IB metal compound on an inorganic metal oxide support material, without substantial added hydrogen, to absorb said contaminants; (b) periodically stopping said providing of said gaseous hydrocarbon feed stream of (a); (c) then, regenerating said adsorbent bed by introducing at least one regenerant, in any order, in the place of said stream; and, (d) continuing to alternate (a) and (b) plus (c) as needed.
    Type: Application
    Filed: April 25, 2008
    Publication date: May 13, 2010
    Inventors: Paul S. Northrop, Narasimhan Sundaram
  • Publication number: 20080314246
    Abstract: The separation of a target gas selected from a high pressure gas mixture containing said target gas as well as a product gas using a swing adsorption process unit. A turboexpander is used upstream of the swing adsorber to reduce the pressure of the high pressure gas mixture. A compressor is optionally used downstream of the swing adsorber to increase the pressure of the target gas-containing stream for injecting into a subterranean formation.
    Type: Application
    Filed: May 16, 2008
    Publication date: December 25, 2008
    Inventors: Harry W. Deckman, Bruce T. Kelley, Eugene R. Thomas, Ronald R. Chance, Paul S. Northrop, Edward W. Corcoran, JR.
  • Publication number: 20080314244
    Abstract: Adsorption of CO2 from flue gas streams using temperature swing adsorption. The resulting CO2 rich stream is compressed for sequestration into a subterranean formation and at least a portion of the heat of compression is used in the desorption step of the temperature swing adsorption process.
    Type: Application
    Filed: May 16, 2008
    Publication date: December 25, 2008
    Inventors: Bruce T. Kelley, Harry W. Deckman, Frank Hershkowitz, Paul S. Northrop, Peter I. Ravikovitch
  • Publication number: 20080314245
    Abstract: The separation of a target gas from a mixture of gases using a thermal swing adsorption process wherein a thermal wave is used, primarily in the desorption step. The process of this invention enables one to separately remove multiple contaminants from a treated gaseous stream.
    Type: Application
    Filed: May 16, 2008
    Publication date: December 25, 2008
    Inventors: Frank Hershkowitz, Harry W. Deckman, Paul S. Northrop, Bruce T. Kelley
  • Publication number: 20080282886
    Abstract: The present invention relates the separation of a target gas from a mixture of gases through the use of engineered structured adsorbent contactors in pressure swing adsorption and thermal swing adsorption processes. Preferably, the contactors contain engineered and substantially parallel flow channels wherein 20 volume percent or less of the open pore volume of the contactor, excluding the flow channels, is in the mesopore and macropore range.
    Type: Application
    Filed: April 4, 2008
    Publication date: November 20, 2008
    Inventors: Sebastian C. Reyes, Harry W. Deckman, Ronald R. Chance, Gregory J. DeMartin, Frank Hershkowitz, Eugene R. Thomas, Paul S. Northrop, Bruce T. Kelley, Edward W. Corcoran, JR.
  • Publication number: 20080282884
    Abstract: A process for the separation of one or more heavy hydrocarbon gases from a gas mixture containing heavy hydrocarbon gas components and methane. The process is conducted in swing adsorption apparatus containing adsorbent contactor having a plurality of flow channels and wherein 20 volume percent or less of the open pore volume of the contactors, is in the mesopore and macropore range.
    Type: Application
    Filed: April 4, 2008
    Publication date: November 20, 2008
    Inventors: Bruce T. Kelley, Paul S. Northrop, Ronald R. Chance, Harry W. Deckman, Edward W. Corcoran, JR., Eugene R. Thomas