Patents by Inventor Paul S. Tamura

Paul S. Tamura has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10974040
    Abstract: Technologies and implementations for a defibrillator electrode having communicative capabilities are generally disclosed.
    Type: Grant
    Filed: August 17, 2017
    Date of Patent: April 13, 2021
    Assignee: Physio-Control, Inc.
    Inventors: Jennifer Goeman Jensen, Jennifer Elaine Hoss, Mitchell A. Smith, Kenneth J Peterson, Maren Louise Nelson, Andres Belalcazar, Daniel W. Piraino, John Robert Knapinski, Matthew L. Bielstein, Ethan P. Albright, Jeffery S. Edwards, Paul S. Tamura
  • Publication number: 20170368328
    Abstract: Technologies and implementations for a defibrillator electrode having communicative capabilities are generally disclosed.
    Type: Application
    Filed: August 17, 2017
    Publication date: December 28, 2017
    Inventors: Jennifer Goeman Jensen, Jennifer Elaine HOSS, Mitchell A. SMITH, Kenneth J. PETERSON, Maren Louise NELSON, Andres BELALCAZAR, Daniel W. PIRAINO, John Robert KNAPINSKI, Matthew L. BIELSTEIN, Ethan P. ALBRIGHT, Jeffery S. EDWARDS, Paul S. TAMURA
  • Publication number: 20170368362
    Abstract: Devices, systems, and methods are disclosed that identify a type of cable coupled to a receptacle of a defibrillator and that activate one or both of an ECG monitoring module and an energy storage circuit based at least in part on the identified cable type. The cable-type identification may allow a defibrillator to, for example, operate in either or both of an ECG monitoring mode and/or a therapy mode, based on the type of cable that is coupled to the defibrillator. The disclosed devices, systems, and methods can monitor an ECG of a patient and deliver defibrillation therapy to the patient, depending on the type of cable coupled to the defibrillator and/or the type of detected ECG signal of the patient.
    Type: Application
    Filed: September 11, 2017
    Publication date: December 28, 2017
    Inventors: Zhong Qun Lu, Richard C. Nova, Paul S. Tamura, Gary A. DeBardi, David W. Tecklenburg, Tyler R. Hart, James S. Neumiller, Richard J. Cardin
  • Patent number: 9844658
    Abstract: Technologies and implementations for a defibrillator electrode having communicative capabilities are generally disclosed.
    Type: Grant
    Filed: July 25, 2014
    Date of Patent: December 19, 2017
    Assignee: Physio-Control, Inc.
    Inventors: Jennifer Goeman Jensen, Jennifer Elaine Hoss, Mitchell A. Smith, Kenneth J. Peterson, Maren Louise Nelson, Andres Belalcazar, Daniel W. Piraino, John Robert Knapinski, Matthew L. Bielstein, Ethan P. Albright, Jeffery S. Edwards, Paul S. Tamura
  • Patent number: 9757578
    Abstract: Devices, systems, and methods are disclosed that identify a type of cable coupled to a receptacle of a defibrillator and that activate one or both of an ECG monitoring module and an energy storage circuit based at least in part on the identified cable type. The cable-type identification may allow a defibrillator to, for example, operate in either or both of an ECG monitoring mode and/or a therapy mode, based on the type of cable that is coupled to the defibrillator. The disclosed devices, systems, and methods can monitor an ECG of a patient and deliver defibrillation therapy to the patient, depending on the type of cable coupled to the defibrillator and/or the type of detected ECG signal of the patient.
    Type: Grant
    Filed: October 27, 2015
    Date of Patent: September 12, 2017
    Assignee: Physio-Control, Inc.
    Inventors: Zhong Qun Lu, Richard C. Nova, Paul S. Tamura, Gary A. DeBardi, David W. Tecklenburg, Tyler R. Hart, James S. Neumiller, Richard J. Cardin
  • Publication number: 20160158527
    Abstract: Technologies and implementations for a defibrillator electrode having communicative capabilities are generally disclosed.
    Type: Application
    Filed: July 25, 2014
    Publication date: June 9, 2016
    Inventors: Jennifer Goeman Jensen, Jennifer Elaine HOSS, Mitchell A. SMITH, Kenneth J PETERSON, Maren Louise NELSON, Andres BELALCAZAR, Daniel W. PIRAINO, John Robert KNAPINSKI, Matthew L. BIELSTEIN, Ethan P. ALBRIGHT, Jeffery S. EDWARDS, Paul S. TAMURA
  • Publication number: 20160045752
    Abstract: Devices, systems, and methods are disclosed that identify a type of cable coupled to a receptacle of a defibrillator and that activate one or both of an ECG monitoring module and an energy storage circuit based at least in part on the identified cable type. The cable-type identification may allow a defibrillator to, for example, operate in either or both of an ECG monitoring mode and/or a therapy mode, based on the type of cable that is coupled to the defibrillator. The disclosed devices, systems, and methods can monitor an ECG of a patient and deliver defibrillation therapy to the patient, depending on the type of cable coupled to the defibrillator and/or the type of detected ECG signal of the patient.
    Type: Application
    Filed: October 27, 2015
    Publication date: February 18, 2016
    Inventors: Zhong Qun Lu, Richard C. Nova, Paul S. Tamura, Gary A. DeBardi, David W. Tecklenburg, Tyler R. Hart, James S. Neumiller, Richard J. Cardin
  • Patent number: 9198593
    Abstract: Techniques for determining whether one or more leads are not adequately connected to a patient, e.g., for ECG monitoring, are described. The techniques involve injection of an integrated signal (which includes a test signal) into one lead, and monitoring the driven lead and the response at the other leads, including the common mode and the difference between the other leads. These “lead-off” detection techniques may be provided by an external defibrillator that provides three-wire ECG monitoring. Techniques for determining a type of a cable coupled to a defibrillator are also described. The cable-type identification may allow a defibrillator to, for example, operate in either a three-wire ECG monitoring mode or a therapy mode, based on whether a three-wire ECG cable or a defibrillation cable is coupled to the defibrillator.
    Type: Grant
    Filed: October 12, 2012
    Date of Patent: December 1, 2015
    Assignee: PHYSIO-CONTROL, INC.
    Inventors: Zhong Qun Lu, Richard C. Nova, Paul S. Tamura, Gary A. DeBardi, David W. Tecklenburg, Tyler R. Hart, James S. Neumiller, Richard J. Cardin
  • Publication number: 20130041421
    Abstract: Techniques for determining whether one or more leads are not adequately connected to a patient, e.g., for ECG monitoring, are described. The techniques involve injection of an integrated signal (which includes a test signal) into one lead, and monitoring the driven lead and the response at the other leads, including the common mode and the difference between the other leads. These “lead-off” detection techniques may be provided by an external defibrillator that provides three-wire ECG monitoring. Techniques for determining a type of a cable coupled to a defibrillator are also described. The cable-type identification may allow a defibrillator to, for example, operate in either a three-wire ECG monitoring mode or a therapy mode, based on whether a three-wire ECG cable or a defibrillation cable is coupled to the defibrillator.
    Type: Application
    Filed: October 12, 2012
    Publication date: February 14, 2013
    Applicant: PHYSIO-CONTROL, INC.
    Inventors: Zhong Qun Lu, Richard C. Nova, Paul S. Tamura, Gary A. DeBardi, David W. Tecklenburg, Tyler R. Hart, James S. Neumiller, Richard J. Cardin
  • Patent number: 8315693
    Abstract: Techniques for determining whether one or more leads are not adequately connected to a patient, e.g., for ECG monitoring, are described. The techniques involve injection of an integrated signal (which includes a test signal) into one lead, and monitoring the driven lead and the response at the other leads, including the common mode and the difference between the other leads. These “lead-off” detection techniques may be provided by an external defibrillator that provides three-wire ECG monitoring. Techniques for determining a type of a cable coupled to a defibrillator are also described. The cable-type identification may allow a defibrillator to, for example, operate in either a three-wire ECG monitoring mode or a therapy mode, based on whether a three-wire ECG cable or a defibrillation cable is coupled to the defibrillator.
    Type: Grant
    Filed: February 26, 2007
    Date of Patent: November 20, 2012
    Assignee: Physio-Control, Inc.
    Inventors: Zhong Qun Lu, Richard C. Nova, Paul S. Tamura, Gary A. DeBardi, David W. Tecklenburg, Tyler R. Hart, James S. Neumiller, Richard J. Cardin
  • Publication number: 20090264948
    Abstract: Defibrillator assemblies and methods to wirelessly transfer energy from an external source to a battery or other rechargeable power source within the defibrillator assembly. The transfer of energy may be through a non-contact interface on a defibrillator cradle or a docking station that mounts the defibrillator. The rate of energy transfer may be equal to the energy drain caused by self-discharge and automated self-testing. Accordingly, since the rate of energy transfer is lower than that required to run the defibrillator system continuously, several wireless methods of energy transfer may be used. In addition, the defibrillator assembly may communicate diagnostic and non-diagnostic data to the external source.
    Type: Application
    Filed: July 1, 2009
    Publication date: October 22, 2009
    Applicant: Medtronic Physio-Control Corp.
    Inventors: Paul S. Tamura, Daniel Yerkovich, Patrick F. Kelly, Richard C. Nova, Joseph Bradley Williamson, Stephen B. Johnson, Gary A. DeBardi
  • Patent number: 7570994
    Abstract: Defibrillator assemblies and methods to wirelessly transfer energy from an external source to a battery or other rechargeable power source within the defibrillator assembly. The transfer of energy may be through a non-contact interface on a defibrillator cradle or a docking station that mounts the defibrillator. The rate of energy transfer may be equal to the energy drain caused by self-discharge and automated self-testing. Accordingly, since the rate of energy transfer is lower than that required to run the defibrillator system continuously, several wireless methods of energy transfer may be used. In addition, the defibrillator assembly may communicate diagnostic and non-diagnostic data to the external source.
    Type: Grant
    Filed: April 25, 2003
    Date of Patent: August 4, 2009
    Assignee: Medtronic Physio-Control Corp.
    Inventors: Paul S. Tamura, Daniel Yerkovich, Patrick F. Kelly, Richard Nova, Joseph Bradley Williamson, Stephen B. Johnson, Gary DeBardi
  • Patent number: 7096062
    Abstract: A method and apparatus for performing self-tests on defibrillation and pacing circuits including a patient isolation switch is disclosed. Tests are provided for the defibrillation and pacing circuitry as well as the isolation switch. For testing the defibrillation circuitry, the impedance drive circuits and preamplifier may be utilized such that the energy storage capacitor is not required to be charged and discharged during the test, thus conserving energy. For testing the pacing circuitry and the isolation switch, the defibrillation circuitry is utilized. For certain of the tests, the test stimulus is the output voltage on the energy storage capacitor, while for other tests the test stimulus may be the pace current as indicated by the voltage across the input to the preamplifier. Alternative tests may be performed depending on whether the impedance at the output of the defibrillator is determined to be an open circuit or a short circuit.
    Type: Grant
    Filed: May 7, 2002
    Date of Patent: August 22, 2006
    Assignee: Medtronic Physio-Control Manufacturing Corp.
    Inventors: Patrick F. Kelly, Paul S. Tamura, Patricia Ewen, Michelle C. Beyersdorf
  • Patent number: 7095210
    Abstract: The power source in a portable defibrillator includes a replaceable first power pack and a rechargeable second power pack. The first power pack charges the second power pack. The second power pack supplies most of the energy needed to administer a defibrillation shock. The first power pack may include one or more lithium thionyl chloride batteries. The second power pack may include one or more lithium ion batteries and/or ultracapacitors.
    Type: Grant
    Filed: May 13, 2003
    Date of Patent: August 22, 2006
    Assignee: Medtronic Emergency Response Systems, Inc.
    Inventors: Paul S. Tamura, Stephen B. Johnson, Richard C. Nova, Joseph L. Sullivan
  • Publication number: 20040267322
    Abstract: The present invention provides a portable defibrillator having a capacitor adapted to receive an electrical charge to deliver a defibrillation charge. Power terminals are provided to receive line power. A charging circuit is provided to charge the capacitor from line power after the power terminals receive line power. Therefore, the defibrillator is capable of receiving line power, such as standard 120 VAC, to charge the defibrillator's capacitor. By charging the capacitor directly through line power, the capacitor is charged in much less time than searching for and replacing a defibrillator battery.
    Type: Application
    Filed: June 27, 2003
    Publication date: December 30, 2004
    Applicant: Medtronic Physio-Control Corp.
    Inventors: Gregory T. Kavounas, Richard C. Nova, Joseph Bradley Williamson, Stephen B. Johnson, Daniel Yerkovich, Patrick F. Kelly, Paul S. Tamura
  • Publication number: 20040212344
    Abstract: Defibrillator assemblies and methods to wirelessly transfer energy from an external source to a battery or other rechargeable power source within the defibrillator assembly. The transfer of energy may be through a non-contact interface on a defibrillator cradle or a docking station that mounts the defibrillator. The rate of energy transfer may be equal to the energy drain caused by self-discharge and automated self-testing. Accordingly, since the rate of energy transfer is lower than that required to run the defibrillator system continuously, several wireless methods of energy transfer may be used. In addition, the defibrillator assembly may communicate diagnostic and non-diagnostic data to the external source.
    Type: Application
    Filed: April 25, 2003
    Publication date: October 28, 2004
    Inventors: Paul S. Tamura, Daniel Yerkovich, Patrick F. Kelly, Richard Nova, Joseph Bradley Williamson, Stephen B. Johnson, Gary DeBardi
  • Patent number: 6727814
    Abstract: A system, method and apparatus for obtaining status information from a portable medical device and communicating said status information to a remote system or user. In one embodiment, the system comprises a sensing device that comprises an optical receiver for receiving status information from at least one status indicator of the portable medical device. The optical receiver is positioned in sufficient proximity to the status indicator to allow optical communication between the optical receiver and the status indicator. A circuit couplable to the optical receiver communicates the status information represented by the status indicator to the remote system or user. In another embodiment, the sensing device comprises a microphone to receive audible status signals from the portable medical device. In yet another embodiment, the sensing device is mounted to a housing, which allows sensing device to sense the status information of an enclosed portable medical device.
    Type: Grant
    Filed: September 24, 2001
    Date of Patent: April 27, 2004
    Assignee: Medtronic Physio-Control Manufacturing Corp.
    Inventors: William E. Saltzstein, Paul S. Tamura, Richard C. Nova, Shawn R. Bertagnole
  • Publication number: 20040044371
    Abstract: An external defibrillator having an output circuit that allows a defibrillation pulse to be discharged to a patient is provided. The output circuit, charging circuit, preamplifier circuit, impedance measurement circuit, energy storage device, battery, and measurement and control circuits of the defibrillator are all referenced to a common ground. The use of a common ground is simpler and less expensive than previous designs which utilized isolation stages and circuits for isolating the high and low voltage circuitry. The output circuit is in the form of an H-bridge which contains three SCR legs and one IGBT leg. Each of the legs contains a single semiconductor switch. The IGBT is placed in the northwest leg of the H-bridge. The two lower legs each contain SCRs, one or both of which may be driven by DC gate drive signals.
    Type: Application
    Filed: September 4, 2002
    Publication date: March 4, 2004
    Applicant: Medtronic Physio-Control Manufacturing Corp.
    Inventors: Paul S. Tamura, D. Craig Edwards, Joseph L. Sullivan
  • Patent number: 6639381
    Abstract: The power source in a portable defibrillator includes a replaceable first power pack and a rechargeable second power pack. The first power pack charges the second power pack. The second power pack supplies most of the energy needed to administer a defibrillation shock. The first power pack may include one or more lithium thionyl chloride batteries. The second power pack may include one or more lithium ion batteries and/or ultracapacitors.
    Type: Grant
    Filed: October 26, 2001
    Date of Patent: October 28, 2003
    Assignee: Medtronic Physio-Control Corp.
    Inventors: Paul S. Tamura, Stephen B. Johnson, Richard C. Nova, Joseph L. Sullivan
  • Publication number: 20030197487
    Abstract: The power source in a portable defibrillator includes a replaceable first power pack and a rechargeable second power pack. The first power pack charges the second power pack. The second power pack supplies most of the energy needed to administer a defibrillation shock. The first power pack may include one or more lithium thionyl chloride batteries. The second power pack may include one or more lithium ion batteries and/or ultracapacitors.
    Type: Application
    Filed: May 13, 2003
    Publication date: October 23, 2003
    Applicant: Medtronic Physio-Control Corp.
    Inventors: Paul S. Tamura, Stephen B. Johnson, Richard C. Nova, Joseph L. Sullivan