Patents by Inventor Paul S. Westbrook

Paul S. Westbrook has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240126009
    Abstract: Described herein are systems, methods, and articles of manufacture for high back-scattering waveguides (e.g., optical fibers) and sensors employing high back-scattering optical fibers. Briefly described, one embodiment comprises a high back-scattering fiber, or enhanced scattering fiber or “ESF,” that features resistance specifications that remain intact over lengths of fiber in excess of 1 m, or preferably >100 m, or preferably >1 km, wherein the reflectivity of the ESFs may be precisely tuned within a range from ?100 dB/mm to ?70 dB/mm, and wherein the enhanced scattering may be spatially continuous or, alternatively, may be at discrete locations spaced apart by 100 microns to >10 m.
    Type: Application
    Filed: February 14, 2022
    Publication date: April 18, 2024
    Applicant: OFS FITEL, LLC
    Inventors: Raja A Ahmad, Paul S Westbrook
  • Publication number: 20240103214
    Abstract: Described herein are systems, methods, and articles of manufacture for a coated fiber modified by actinic radiation to increase back-scattering, which experiences very little back-scattering decay at a temperature and time of exposure that is sufficient to noticeably degrade the coating and/or noticeably degrade the optical fiber due to outgassing of hydrogen from the coating. In one embodiment, an optical fiber comprises a fiber length, a coating having a treated coating weight, wherein the treated coating weight is at least 25% less of an original coating weight prior to an annealing treatment, and an optical back-scatter along the fiber length greater than a Rayleigh back-scattering over the fiber length, wherein the optical back-scatter does not decrease along the fiber length by more than 3 dB after exposure to annealing treatment.
    Type: Application
    Filed: February 2, 2022
    Publication date: March 28, 2024
    Applicant: OFS Fitel, LLC
    Inventors: Robert S Dyer, Adam Hokansson, Matthew Popelka, Brian Savran, Paul S Westbrook, Vixay R Soundara, Andrei A Stolov
  • Patent number: 11933600
    Abstract: An extended length of optical fiber having an offset core with an inscribed Bragg grating is used a distributed sensor in combination with an optical frequency domain reflectometer (OFDR) to enable measurement small-scale (e.g., sub-millimeter) contortions and forces as applied to the fiber. The offset core may be disposed in a spiral configuration around the central axis of the optical fiber to improve the spatial resolution of the measurement. A reference surface exhibit a predetermined texture (in the form of a series of corrugations, for example, that may be periodic or aperiodic, as long as known a priori) is disposed adjacent to a longitudinal portion of the sensor fiber. The application of a force to the combination of the plate and the fiber creates a local strain in the grating formed along the offset core of the fiber that results in a shift in the Bragg wavelength of the grating.
    Type: Grant
    Filed: November 18, 2019
    Date of Patent: March 19, 2024
    Assignee: OFS FITEL, LLC
    Inventors: Raja A Ahmad, Kenneth S Feder, Wing Ko, Paul S Westbrook
  • Publication number: 20230137926
    Abstract: A system for sensing microbends and micro-deformations in three-dimensional space is based upon a distributed length optical fiber formed to include a group of offset cores disposed in a spiral configuration along the length of the fiber, each core including a fiber Bragg grating that exhibits the same Bragg wavelength. A micro-scale local deformation of the multicore fiber produces a local shift in the Bragg wavelength, where the use of multiple cores allows for a complete micro-scale modeling of the local deformation. Sequential probing of each core allows for optical frequency domain reflectometry (OFDR) allows for reconstruction of a given three-dimensional shape, delineating location and size of various microbends and micro-deformations.
    Type: Application
    Filed: March 15, 2021
    Publication date: May 4, 2023
    Applicant: OFS Fitel, LLC
    Inventors: Raja A Ahmad, Paul S Westbrook
  • Publication number: 20230111714
    Abstract: A high backscattering optical fiber comprising a perturbed segment in which the perturbed segment reflects a relative power such that the optical fiber has an effective index of neff, a numerical aperture of NA, a scatter of Rp?r(fiber) that varies axially along the optical fiber, a total transmission loss of ?fiber, an in-band range greater than one nanometer (1 nm), and a figure of merit (FOM) in the in-band range. The FOM being defined as: F ? O ? M = R p ? "\[Rule]" r ( fiber ) ? fiber ( NA 2 ? n eff ) 2 .
    Type: Application
    Filed: December 12, 2022
    Publication date: April 13, 2023
    Applicant: OFS Fitel, LLC
    Inventors: Tristan Kremp, Paul S. Westbrook, Tommy Geisler
  • Publication number: 20230036344
    Abstract: Described herein are systems, methods, and articles of manufacture for a spatially nonuniform scattering profile along its length, whose backscattering signal can be used for sensing even after fiber attenuation increases due to the conditions in the sensing environment. In one embodiment, the fiber has been pre-exposed to the conditions that produce attenuation, and the spatially nonuniform profile compensates for this. Subsequent exposure then results in very little or at least acceptable levels of additional attenuation. An exemplary fiber comprises a fiber length and an optical back scatter along the fiber length greater than a Rayleigh back scattering over the fiber length, wherein the optical back scatter does not decrease along the fiber length by more than 3 dB after exposure to a hydrogen-rich first environment having a given pressure and temperature.
    Type: Application
    Filed: January 11, 2021
    Publication date: February 2, 2023
    Applicant: OFS Fitel, LLC
    Inventors: Andrei A Stolov, Paul S Westbrook
  • Patent number: 11555955
    Abstract: A high backscattering optical fiber comprising a perturbed segment in which the perturbed segment reflects a relative power such that the optical fiber has an effective index of neff, a numerical aperture of NA, a scatter of Rp?r(fiber) that varies axially along the optical fiber, a total transmission loss of ?fiber, an in-band range greater than one nanometer (1 nm), and a figure of merit (FOM) in the in-band range. The FOM being defined as: FOM = R p ? r ( fiber ) ? fiber ? ( NA 2 ? n eff ) 2 .
    Type: Grant
    Filed: March 31, 2021
    Date of Patent: January 17, 2023
    Assignee: OFS FITEL, LLC
    Inventors: Tristan Kremp, Paul S. Westbrook, Tommy Geisler
  • Publication number: 20220337015
    Abstract: An optical fiber amplifier is formed to include a grating structure inscribed within the rare earth-doped gain fiber itself, providing distributed wavelength-dependent filtering (attenuation) and minimizing the need for any type of gain-flattening filter to be used at the output of the amplifier. The grating structure may be of any suitable arrangement that provides the desired loss spectrum, for example, similar to the profile of a prior art discrete GFF. Various types of grating structures that may be used to provide distributed wavelength-dependent filtering along the gain include, but are not limited to, tilted gratings, weak Bragg gratings, long-period grating (LPG), and any suitable combination of these grating structures.
    Type: Application
    Filed: August 18, 2020
    Publication date: October 20, 2022
    Applicant: OFS Fitel, LLC
    Inventors: David J DiGiovanni, Paul S Westbrook, Benyuan Zhu
  • Publication number: 20210389121
    Abstract: An extended length of optical fiber having an offset core with an inscribed Bragg grating is used a distributed sensor in combination with an optical frequency domain reflectometer (OFDR) to enable measurement small-scale (e.g., sub-millimeter) contortions and forces as applied to the fiber. The offset core may be disposed in a spiral configuration around the central axis of the optical fiber to improve the spatial resolution of the measurement. A reference surface exhibit a predetermined texture (in the form of a series of corrugations, for example, that may be periodic or aperiodic, as long as known a priori) is disposed adjacent to a longitudinal portion of the sensor fiber. The application of a force to the combination of the plate and the fiber creates a local strain in the grating formed along the offset core of the fiber that results in a shift in the Bragg wavelength of the grating.
    Type: Application
    Filed: November 18, 2019
    Publication date: December 16, 2021
    Applicant: OFS FITEL, LLC
    Inventors: Raja A Ahmad, Kenneth S Feder, Wing Ko, Paul S Westbrook
  • Patent number: 11163324
    Abstract: An optical probe includes an optical source that generates an optical beam that propagates from a proximal end to a distal end of an optical fiber that imparts a transformation of a spatial profile of the optical beam. An optical control device imparts a compensating spatial profile on the optical beam that at least partially compensates for the transformation of the spatial profile of the optical beam imparted by the optical fiber in response to a control signal from a signal processor. A distal optical source generates a calibration light that propagates through the one or more optical waveguides from the distal end to the proximal end of the optical fiber. An optical detector detects the calibration light and generates electrical signals in response to the detected calibration light.
    Type: Grant
    Filed: September 29, 2020
    Date of Patent: November 2, 2021
    Assignee: OFS FITEL, LLC
    Inventors: Eric Swanson, Tristan Kremp, Paul S Westbrook, David J DiGiovanni
  • Publication number: 20210247563
    Abstract: A high backscattering optical fiber comprising a perturbed segment in which the perturbed segment reflects a relative power such that the optical fiber has an effective index of neff, a numerical aperture of NA, a scatter of Rp?r(fiber) that varies axially along the optical fiber, a total transmission loss of ?fiber, an in-band range greater than one nanometer (1 nm), and a figure of merit (FOM) in the in-band range. The FOM being defined as: FOM = R p ? r ( fiber ) ? fiber ? ( NA 2 ? n eff ) 2 .
    Type: Application
    Filed: March 31, 2021
    Publication date: August 12, 2021
    Applicant: OFS Fitel, LLC
    Inventors: Tristan Kremp, Paul S. Westbrook, Tommy Geisler
  • Patent number: 11061184
    Abstract: A high backscattering optical fiber comprising a perturbed segment in which the perturbed segment reflects a relative power such that the optical fiber has an effective index of neff, a numerical aperture of NA, a scatter of Rp?r(fiber), a total transmission loss of ?fiber, an in-band range greater than one nanometer (1 nm), a center wavelength (?0) of the in-band range (wherein 950 nm<?0<1700 nm), and a figure of merit (FOM) in the in-band range. The FOM>1, with the FOM being defined as: FOM = R p ? r ( fiber ) ? fiber ? ( NA 2 ? n eff ) 2 .
    Type: Grant
    Filed: August 18, 2020
    Date of Patent: July 13, 2021
    Assignee: OFS FITEL, LLC
    Inventors: Tristan Kremp, Paul S. Westbrook, Tommy Geisler
  • Publication number: 20210055752
    Abstract: An optical probe includes an optical source that generates an optical beam that propagates from a proximal end to a distal end of an optical fiber that imparts a transformation of a spatial profile of the optical beam. An optical control device imparts a compensating spatial profile on the optical beam that at least partially compensates for the transformation of the spatial profile of the optical beam imparted by the optical fiber in response to a control signal from a signal processor. A distal optical source generates a calibration light that propagates through the one or more optical waveguides from the distal end to the proximal end of the optical fiber. An optical detector detects the calibration light and generates electrical signals in response to the detected calibration light.
    Type: Application
    Filed: September 29, 2020
    Publication date: February 25, 2021
    Applicant: OFS FITEL, LLC
    Inventors: Eric Swanson, Tristan Kremp, Paul S. Westbrook, David J. DiGiovanni
  • Publication number: 20200379167
    Abstract: A high backscattering optical fiber comprising a perturbed segment in which the perturbed segment reflects a relative power such that the optical fiber has an effective index of neff, a numerical aperture of NA, a scatter of Rp?r(fiber), a total transmission loss of ?fiber, an in-band range greater than one nanometer (1 nm), a center wavelength (?0) of the in-band range (wherein 950 nm<?0<1700 nm), and a figure of merit (FOM) in the in-band range. The FOM>1, with the FOM being defined as: FOM = R p ? r ( fiber ) ? fiber ? ( NA 2 ? n eff ) 2 .
    Type: Application
    Filed: August 18, 2020
    Publication date: December 3, 2020
    Applicant: OFS Fitel, LLC
    Inventors: Tristan Kremp, Paul S. Westbrook, Tommy Geisler
  • Patent number: 10809750
    Abstract: An optical probe includes an optical source that generates an optical beam that propagates from a proximal end to a distal end of an optical fiber that imparts a transformation of a spatial profile of the optical beam. An optical control device imparts a compensating spatial profile on the optical beam that at least partially compensates for the transformation of the spatial profile of the optical beam imparted by the optical fiber in response to a control signal from a signal processor. A distal optical source generates a calibration light that propagates through the one or more optical waveguides from the distal end to the proximal end of the optical fiber. An optical detector detects the calibration light and generates electrical signals in response to the detected calibration light.
    Type: Grant
    Filed: July 28, 2019
    Date of Patent: October 20, 2020
    Assignees: OFS Fitel, LLC
    Inventors: Eric Swanson, Tristan Kremp, Paul S. Westbrook, David DiGiovanni
  • Patent number: 10677983
    Abstract: Disclosed herein is an optical fiber having an optically uniform coating having no physical defects in the coating greater than 100 micrometers in size over a length of 50 meters or greater.
    Type: Grant
    Filed: July 31, 2017
    Date of Patent: June 9, 2020
    Assignee: OFS Fitel, LLC
    Inventor: Paul S Westbrook
  • Publication number: 20190369650
    Abstract: An optical probe includes an optical source that generates an optical beam that propagates from a proximal end to a distal end of an optical fiber that imparts a transformation of a spatial profile of the optical beam. An optical control device imparts a compensating spatial profile on the optical beam that at least partially compensates for the transformation of the spatial profile of the optical beam imparted by the optical fiber in response to a control signal from a signal processor. A distal optical source generates a calibration light that propagates through the one or more optical waveguides from the distal end to the proximal end of the optical fiber. An optical detector detects the calibration light and generates electrical signals in response to the detected calibration light.
    Type: Application
    Filed: July 28, 2019
    Publication date: December 5, 2019
    Applicants: OFS Fitel, LLC
    Inventors: Eric Swanson, Tristan Kremp, Paul S. Westbrook, David DiGiovanni
  • Patent number: 10401883
    Abstract: An optical probe includes an optical source that generates an optical beam that propagates from a proximal end to a distal end of an optical fiber that imparts a transformation of a spatial profile of the optical beam. An optical control device imparts a compensating spatial profile on the optical beam that at least partially compensates for the transformation of the spatial profile of the optical beam imparted by the optical fiber in response to a control signal from a signal processor. A distal optical source generates a calibration light that propagates through the one or more optical waveguides from the distal end to the proximal end of the optical fiber. An optical detector detects the calibration light and generates electrical signals in response to the detected calibration light.
    Type: Grant
    Filed: January 11, 2018
    Date of Patent: September 3, 2019
    Assignees: OFS Fitel, LLC
    Inventors: Eric Swanson, Tristan Kremp, Paul S. Westbrook, David DiGiovanni
  • Publication number: 20190212761
    Abstract: An optical probe includes an optical source that generates an optical beam that propagates from a proximal end to a distal end of an optical fiber that imparts a transformation of a spatial profile of the optical beam. An optical control device imparts a compensating spatial profile on the optical beam that at least partially compensates for the transformation of the spatial profile of the optical beam imparted by the optical fiber in response to a control signal from a signal processor. A distal optical source generates a calibration light that propagates through the one or more optical waveguides from the distal end to the proximal end of the optical fiber. An optical detector detects the calibration light and generates electrical signals in response to the detected calibration light.
    Type: Application
    Filed: January 11, 2018
    Publication date: July 11, 2019
    Applicants: OFS Fitel, LLC
    Inventors: Eric Swanson, Tristan Kremp, Paul S. Westbrook, David DiGiovanni
  • Patent number: 10234385
    Abstract: An optical fiber having at least one fiduciary mark is provided. The at least one fiduciary mark is located at one or more axial positions along the optical fiber. The at least one fiduciary mark is configured to produce at least one change in a backscattering signal in the optical fiber. The at least one change in a backscattering signal may be an abrupt change in the backscattering signal. The abrupt change in the backscattering signal occurs over a length of the optical fiber that is of the order of or less than a spatial resolution of an interrogation system employed to detect the backscattering signal.
    Type: Grant
    Filed: September 16, 2016
    Date of Patent: March 19, 2019
    Assignee: OFS FITEL, LLC
    Inventor: Paul S Westbrook