Patents by Inventor Paul Schleyer

Paul Schleyer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240135557
    Abstract: A framework for gantry alignment of a multimodality medical scanner. First image data of a non-radioactive structure is acquired by using intrinsic radiation emitted by scintillator crystals of detectors in a first gantry of the multimodality medical scanner. Second image data of the non-radioactive structure is acquired using a second gantry for another modality of the multimodality medical scanner. Image reconstruction may be performed based on the first and second image data of the non-radioactive structure to generate first and second reconstructed image volumes. A gantry alignment transformation that aligns the first and second reconstructed image volumes may then be determined.
    Type: Application
    Filed: December 13, 2023
    Publication date: April 25, 2024
    Inventors: Paul Schleyer, Deepak Bharkhada, Harold E. Rothfuss, Mohammadreza Teimoorisichani, Dieter Ritter
  • Patent number: 11880986
    Abstract: A framework for gantry alignment of a multimodality medical scanner. First image data of a non-radioactive structure is acquired by using intrinsic radiation emitted by scintillator crystals of detectors in a first gantry of the multimodality medical scanner. Second image data of the non-radioactive structure is acquired using a second gantry for another modality of the multimodality medical scanner. Image reconstruction may be performed based on the first and second image data of the non-radioactive structure to generate first and second reconstructed image volumes. A gantry alignment transformation that aligns the first and second reconstructed image volumes may then be determined.
    Type: Grant
    Filed: June 9, 2021
    Date of Patent: January 23, 2024
    Assignee: Siemens Medical Solutions USA, Inc.
    Inventors: Paul Schleyer, Deepak Bharkhada, Harold E. Rothfuss, Mohammadreza Teimoorisichani, Dieter Ritter
  • Publication number: 20230298231
    Abstract: PET imaging (406) accounts for attenuation by MR hardware (110). A camera (112) captures the MR hardware (110) as positioned on or by the patient (116). For example, MR local coils to be or as positioned between the emission sources in the patient (116) and the PET detector are optically imaged (402). Image processing is used to determine (404) the position of the MR hardware (110). The attenuation of the MR hardware (110) is accounted for in attenuation correction for PET imaging (402) based on the determined position.
    Type: Application
    Filed: April 30, 2021
    Publication date: September 21, 2023
    Inventors: Paul Schleyer, Emily Anaya
  • Publication number: 20230288508
    Abstract: A PET system for a PET/MRI machine is disclosed. The PET system includes a PET detector assembly arranged to form a single gap aligned with the high-density support structure assembly and the shielded cable assembly that run along the patient bed in the PET/MRI machine. The PET detector arrangement maximizes the allowable diameter of the PET system within the MR magnet and ensures that the high-density material does not interfere with image acquisition. Further, various image reconstruction techniques compatible with the PET detector arrangement are described.
    Type: Application
    Filed: September 11, 2020
    Publication date: September 14, 2023
    Inventors: Matthias J. Schmand, Paul Schleyer, James L. Corbeil, Vladimir Panin
  • Patent number: 11756192
    Abstract: Systems and methods include acquisition of magnetic resonance data of a subject disposed in a first position, acquisition of positron emission tomography data of imaging hardware and of the subject disposed substantially in the first position, generation of a subject attenuation correction map of the subject based on the magnetic resonance data, determination of an imaging hardware attenuation correction map associated with the imaging hardware, determination of a target location and orientation of the imaging hardware attenuation correction map with respect to the positron emission tomography data and based on the positron emission tomography data and on the subject attenuation correction map, and application of attenuation correction to the positron emission tomography data based on the imaging hardware attenuation correction map in the target location and orientation and the subject attenuation correction map to generate attenuation-corrected positron emission tomography data.
    Type: Grant
    Filed: December 11, 2020
    Date of Patent: September 12, 2023
    Assignee: Siemens Medical Solutions USA, Inc.
    Inventor: Paul Schleyer
  • Patent number: 11622742
    Abstract: Embodiments provide a computer-implemented method of deriving a periodic motion signal from imaging data for continuous bed motion acquisition, including: acquiring a time series of three dimensional image volumes; estimating a first motion signal through a measurement of distribution of each three dimensional image volume; dividing the time-series of three dimensional image volumes into a plurality of axial sections overlapping each other by a predetermined amount; performing a spectral analysis on each axial section to locate a plurality of three dimensional image volumes which are subject to a periodic motion; performing a phase optimization on each axial section to obtain a three dimensional mask; estimating a second motion signal through the three dimensional mask and the time-series of three dimensional image volumes; and estimating a final motion signal based on the first motion signal and the second motion signal.
    Type: Grant
    Filed: March 27, 2019
    Date of Patent: April 11, 2023
    Assignee: Siemens Medical Solutions USA, Inc.
    Inventors: Paul Schleyer, Inki Hong, Judson P. Jones
  • Publication number: 20220398754
    Abstract: A framework for gantry alignment of a multimodality medical scanner. First image data of a non-radioactive structure is acquired by using intrinsic radiation emitted by scintillator crystals of detectors in a first gantry of the multimodality medical scanner. Second image data of the non-radioactive structure is acquired using a second gantry for another modality of the multimodality medical scanner. Image reconstruction may be performed based on the first and second image data of the non-radioactive structure to generate first and second reconstructed image volumes. A gantry alignment transformation that aligns the first and second reconstructed image volumes may then be determined.
    Type: Application
    Filed: June 9, 2021
    Publication date: December 15, 2022
    Inventors: Paul Schleyer, Deepak Bharkhada, Harold E. Rothfuss, Mohammadreza Teimoorisichani, Dieter Ritter
  • Publication number: 20220309652
    Abstract: Disclosed herein are novel techniques that address blurriness in medical images resulting from motion of a rigid body, such as a patient, relative to the medical scanning equipment by using a motion-correction algorithm for 3D medical images using to two-dimensional projections.
    Type: Application
    Filed: October 4, 2019
    Publication date: September 29, 2022
    Inventors: Inki Hong, Ziad Burbar, Paul Schleyer
  • Publication number: 20220265237
    Abstract: A system and method include localization of a first frame of positron emission tomography data acquired by an imaging device to a first frame of Cartesian data, generation of a first Cartesian image volume based on the first frame of Cartesian data, display of the first Cartesian image volume, localization of a second frame of positron emission tomography data acquired by the imaging device to a second frame of Cartesian data, generation of a second Cartesian image volume based on the second frame of Cartesian data, and display of the combined Cartesian image volume.
    Type: Application
    Filed: January 14, 2020
    Publication date: August 25, 2022
    Inventors: Paul Schleyer, Inki Hong
  • Publication number: 20220262048
    Abstract: A system and method include association of imaging event data to one of a plurality of bins based on a time associated with the imaging event data, determination that the time periods of a first bin and the time periods of a second bin are adjacent-in-time, determination of whether a spatial characteristic of the imaging event data of the first bin is within a predetermined threshold of the spatial characteristic of the imaging event data of the second bin, and, based on the determination, reconstruction of one or more images based on the imaging event data of the first bin and the second bin.
    Type: Application
    Filed: October 10, 2019
    Publication date: August 18, 2022
    Inventors: Inki Hong, Ziad Burbar, Paul Schleyer
  • Patent number: 11270434
    Abstract: A framework for motion correction in medical image data. In accordance with one aspect, one or more anatomical ranges where motion is expected are identified in a localizer image of a subject. Image reconstruction with motion correction may be performed based on medical image data within the one or more anatomical ranges to generate motion corrected image data. The motion corrected image data may then be combined with non-motion corrected image data to generate final image data.
    Type: Grant
    Filed: August 12, 2020
    Date of Patent: March 8, 2022
    Assignee: Siemens Medical Solutions USA, Inc.
    Inventors: Paul Schleyer, Sebastian Fuerst, Matthew Mitchell
  • Publication number: 20210312617
    Abstract: Systems and methods include acquisition of magnetic resonance data of a subject disposed in a first position, acquisition of positron emission tomography data of imaging hardware and of the subject disposed substantially in the first position, generation of a subject attenuation correction map of the subject based on the magnetic resonance data, determination of an imaging hardware attenuation correction map associated with the imaging hardware, determination of a target location and orientation of the imaging hardware attenuation correction map with respect to the positron emission tomography data and based on the positron emission tomography data and on the subject attenuation correction map, and application of attenuation correction to the positron emission tomography data based on the imaging hardware attenuation correction map in the target location and orientation and the subject attenuation correction map to generate attenuation-corrected positron emission tomography data.
    Type: Application
    Filed: December 11, 2020
    Publication date: October 7, 2021
    Inventor: Paul Schleyer
  • Publication number: 20210106301
    Abstract: Embodiments provide a computer-implemented method of deriving a periodic motion signal from imaging data for continuous bed motion acquisition, including: acquiring a time series of three dimensional image volumes; estimating a first motion signal through a measurement of distribution of each three dimensional image volume; dividing the time-series of three dimensional image volumes into a plurality of axial sections overlapping each other by a predetermined amount; performing a spectral analysis on each axial section to locate a plurality of three dimensional image volumes which are subject to a periodic motion; performing a phase optimization on each axial section to obtain a three dimensional mask; estimating a second motion signal through the three dimensional mask and the time-series of three dimensional image volumes; and estimating a final motion signal based on the first motion signal and the second motion signal.
    Type: Application
    Filed: March 27, 2019
    Publication date: April 15, 2021
    Inventors: Paul Schleyer, Inki Hong, Judson P. Jones
  • Publication number: 20210104037
    Abstract: A framework for motion correction in medical image data. In accordance with one aspect, one or more anatomical ranges where motion is expected are identified in a localizer image of a subject. Image reconstruction with motion correction may be performed based on medical image data within the one or more anatomical ranges to generate motion corrected image data. The motion corrected image data may then be combined with non-motion corrected image data to generate final image data.
    Type: Application
    Filed: August 12, 2020
    Publication date: April 8, 2021
    Inventors: Paul Schleyer, Sebastian Fuerst, Matthew Mitchell
  • Publication number: 20050123183
    Abstract: The present invention relates to a system and method of correcting respiratory induced motion in nuclear medicine imaging. Images are acquired dynamically, and gated post-acquisition, generating a series of near motion-free bins. These bins are then aligned to produce a motion corrected image without extending the acquisition time.
    Type: Application
    Filed: August 31, 2004
    Publication date: June 9, 2005
    Inventors: Paul Schleyer, Graeme O'Keefe, Andrew Scott