Patents by Inventor Paul Scott Northrop

Paul Scott Northrop has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150159945
    Abstract: The present disclosure provides a method of separating a feed stream in a distillation tower. The method includes maintaining a controlled freeze zone section in a distillation tower; maintaining a melt tray assembly within the controlled freeze zone section that operates at a temperature and pressure at which solid melts; forming solids in a controlled freeze zone section; raising a liquid level of a liquid in the melt tray assembly when the solids accumulate on a mechanical component in the controlled freeze zone section; raising a liquid temperature of the liquid while raising the liquid level; and lowering the liquid level after at least one of (a) a predetermined time period has passed and (b) an alternative temperature of the mechanical component is within an expected temperature range of a baseline temperature of the mechanical component.
    Type: Application
    Filed: October 17, 2014
    Publication date: June 11, 2015
    Inventors: Jaime A. Valencia, Paul Scott Northrop
  • Publication number: 20140335002
    Abstract: Systems and methods for separating CO2 and H2S from a natural gas stream are provided herein. The system includes a first loop of co-current contacting systems configured to remove H2S and CO2 from a natural gas stream and a second loop of co-current contacting systems configured to remove the H2S from the CO2.
    Type: Application
    Filed: May 2, 2014
    Publication date: November 13, 2014
    Inventors: Paul Scott Northrop, Charles J. Mart, J. Tim Cullinane
  • Publication number: 20130098105
    Abstract: A system for removing acid gases from a raw gas stream is provided. The system includes a cryogenic distillation column. The cryogenic distillation column receives a dehydrated and chilled sour gas stream, and separates the sour gas stream into an overhead gas stream comprised primarily of methane, and a bottom acid gas stream comprised primarily of carbon dioxide. The system also includes a series of co-current contactors. The co-current contactors may be placed in series to receive the bottom acid gas stream and recapture any entrained methane gas. Alternatively or in addition, the co-current contactors may be placed in series to receive the overhead gas stream, and sweeten it using a reflux liquid such as methane. In this instance, the sweetened gas is optionally liquefied and delivered for commercial sale, or is used as fuel gas on-site.
    Type: Application
    Filed: June 28, 2011
    Publication date: April 25, 2013
    Inventor: Paul Scott Northrop
  • Patent number: 8312738
    Abstract: The present invention relates to methods and apparatuses for the operation of a distillation tower containing a controlled freezing zone and at least one distillation section. The process and tower design are utilized for the additional recovery of hydrocarbons from an acid gas. In this process, a separation process is utilized in which a multi-component feedstream is introduced into an apparatus that operates under solids forming conditions for at least one of the feedstream components. The freezable component, although typically CO2, H2S, or another acid gas, can be any component that has the potential for forming solids in the separation system. A dividing wall is added to at least a portion of the lower distillation section of the apparatus to effect the separation of at least some fraction of the hydrocarbons in that portion of the tower.
    Type: Grant
    Filed: November 20, 2007
    Date of Patent: November 20, 2012
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Vikram Singh, Edward J. Grave, Paul Scott Northrop, Narasimhan Sundaram
  • Publication number: 20120204599
    Abstract: A system for removing acid gases from a raw gas stream includes an acid gas removal system (AGRS) and a sulfurous components removal system (SCRS). The acid gas removal system receives a sour gas stream and separates it into an overhead gas stream comprised primarily of methane, and a bottom acid gas stream comprised primarily of carbon dioxide. The sulfurous components removal system is placed either upstream or downstream of the acid gas removal system. The SCRS receives a gas stream and generally separates the gas stream into a first fluid stream comprising hydrogen sulfide, and a second fluid stream comprising carbon dioxide. Where the SCRS is upstream of the AGRS, the second fluid stream also includes primarily methane. Where the SCRS is downstream of the AGRS, the second fluid stream is principally carbon dioxide. Various types of sulfurous components removal systems may be utilized.
    Type: Application
    Filed: August 2, 2010
    Publication date: August 16, 2012
    Inventors: Paul Scott Northrop, Bruce T. Kelley, Charles J. Mart
  • Publication number: 20120125043
    Abstract: A system for removing acid gases from a raw gas stream is provided. The system includes a cryogenic distillation tower. The cryogenic distillation tower has a controlled freezing zone that receives a cold liquid spray comprised primarily of methane. The tower receives and then separates the raw gas stream into an overhead methane gas stream and a substantially solid material comprised of carbon dioxide. The system includes a collector tray below the controlled freezing zone. The collector tray receives the substantially solid material as it is precipitated in the controlled freezing zone. The system also has a filter. The filter receives the substantially solid material and then separates it into a solid material comprised primarily of carbon dioxide, and a liquid material comprising methane. The solid material may be warmed as a liquid and sold, while the liquid material is returned to the cryogenic distillation tower.
    Type: Application
    Filed: July 22, 2010
    Publication date: May 24, 2012
    Applicant: EXXONMOBILE UPSTREAM RESEARCH COMPANY
    Inventors: John Tim Cullinane, Paul Scott Northrop
  • Publication number: 20120079852
    Abstract: A system for removing acid gases from a sour gas stream is provided. The system includes an acid gas removal system and a heavy hydrocarbon removal system. The acid gas removal system receives the sour gas stream and separates the sour gas stream into an overhead gas stream comprised primarily of methane, and a bottom acid gas stream comprised primarily of acid gases such as carbon dioxide. The heavy hydrocarbon removal system may be placed upstream or downstream of the acid gas removal system or both. The heavy hydrocarbon removal system receives a gas stream and separates the gas stream into a first fluid stream comprising heavy hydrocarbons and a second fluid stream comprising other components. The components of the second fluid stream will depend on the composition of the gas stream. Various types of heavy hydrocarbon removal systems may be utilized.
    Type: Application
    Filed: July 9, 2010
    Publication date: April 5, 2012
    Inventors: Paul Scott Northrop, Edward L. Kimble, Charles J. Mart, Paul W. Sibal, Bruce T. Kelley
  • Publication number: 20120031144
    Abstract: A system for removing acid gases from a raw gas stream the system includes a cryogenic distillation tower. The tower receives and separates the raw gas stream into an overhead methane stream and a bottom liquefied acid gas stream. Refrigeration equipment downstream of the cryogenic distillation tower cools the overhead methane stream and returns a portion of the overhead methane stream to the cryogenic distillation tower as liquid reflux. The system also may include a first molecular sieve bed upstream of the distillation tower and a second molecular sieve bed downstream of the distillation tower. The first molecular sieve bed adsorbs water while the second molecular sieve bed adsorbs additional acid gases from the cooled overhead methane stream.
    Type: Application
    Filed: January 22, 2010
    Publication date: February 9, 2012
    Inventors: Paul Scott Northrop, Bruce T. Kelley, Charles J. Mart
  • Publication number: 20110168019
    Abstract: A gas processing facility for the separation of fluids is provided. The facility includes co-current contactors placed in series. Each co-current contactor receives a gas stream that includes a non-absorbing gas such as a hydrocarbon gas or nitrogen. The gas stream also includes an acid gas or other contaminant. Each co-current contactor also receives a liquid solvent stream. The co-current contactors then each release a sweetened gas stream and a gas-treating solution. In one processing direction, the contactors are arranged to deliver progressively sweetened gas streams. In the opposite processing direction, the contactors are arranged to deliver progressively richer gas-treating solutions. In one aspect, the facility includes at least a first co-current contactor, a second co-current contactor and a final co-current contactor. However, any number of at least two co-current separators may be employed. Methods and processes for separating a gas stream are also provided.
    Type: Application
    Filed: August 27, 2009
    Publication date: July 14, 2011
    Inventors: Paul Scott Northrop, Edward J. Grave, John T. Cullinane
  • Publication number: 20110031103
    Abstract: The present application is directed to a method and system for preparing gaseous utility streams from gaseous process streams, particularly, removing oil contamination from such streams prior to use in a dry gas seal. The methods and systems may include at least one kinetic swing adsorption process including pressure swing adsorption, temperature swing adsorption, calcination, and inert purge processes to treat gaseous streams for use in dry gas seals of rotating equipment such as compressors, turbines and pumps and other utilities. The adsorbent materials used include a high surface area solid structured microporous and mesoporous materials.
    Type: Application
    Filed: March 18, 2009
    Publication date: February 10, 2011
    Inventors: Harry W. Deckman, Preeti Kamakoti, Peter I. Ravikovitch, Bruce T. Kelley, Paul Scott Northrop, Peter C. Rasmussen, Paul Lawrence Tanaka, Martin N. Webster, Wieslaw Jerzy Roth, Edward W. Corcoran
  • Publication number: 20100018248
    Abstract: A cryogenic distillation tower is provided for the separation of a fluid stream containing at least methane and carbon dioxide. The cryogenic distillation tower has a lower stripping section, an upper rectification section, and an intermediate spray section. The intermediate spray section includes a plurality of spray nozzles that inject a liquid freeze zone stream. The nozzles are configured such that substantial liquid coverage is provided across the inner diameter of the intermediate spray section. The liquid freeze zone stream generally includes methane at a temperature and pressure whereby both solid carbon dioxide particles and a methane-enriched vapor stream are formed. The tower may further include one or more baffles below the nozzles to create frictional resistance to the gravitational flow of the liquid freeze zone stream. This aids in the breakout and recovery of methane gas. Additional internal components are provided to improve heat transfer and to facilitate the breakout of methane gas.
    Type: Application
    Filed: October 20, 2007
    Publication date: January 28, 2010
    Inventors: Eleanor R Fieler, Edward J. Grave, Paul Scott Northrop, Norman K. Yeh
  • Publication number: 20090266107
    Abstract: The present invention relates to methods and apparatuses for the operation of a distillation tower containing a controlled freezing zone and at least one distillation section. The process and tower design are utilized for the additional recovery of hydrocarbons from an acid gas. In this process, a separation process is utilized in which a multi-component feedstream is introduced into an apparatus that operates under solids forming conditions for at least one of the feedstream components. The freezable component, although typically CO2, H2S, or another acid gas, can be any component that has the potential for forming solids in the separation system. A dividing wall is added to at least a portion of the lower distillation section of the apparatus to effect the separation of at least some fraction of the hydrocarbons in that portion of the tower.
    Type: Application
    Filed: November 20, 2007
    Publication date: October 29, 2009
    Inventors: Vikram Singh, Edward J. Grave, Paul Scott Northrop, Narasimhan Sundaram