Patents by Inventor Paul Stanley

Paul Stanley has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9402573
    Abstract: A system is configured to determine a fluid responsiveness index of a patient from a physiological signal. The system may include a sensor configured to be secured to an anatomical portion of the patient, and a monitor operatively connected to the sensor. The sensor is configured to sense a physiological characteristic of the patient. The monitor is configured to receive a physiological signal from the sensor. The monitor may include an index-determining module configured to determine the fluid responsiveness index through formation of a ratio of one or both of amplitude or frequency modulation of the physiological signal to baseline modulation of the physiological signal.
    Type: Grant
    Filed: June 3, 2015
    Date of Patent: August 2, 2016
    Assignee: Covidien LP
    Inventors: Mark Su, James Nicholas Watson, Paul Stanley Addison
  • Publication number: 20160198963
    Abstract: Systems and methods are provided for storing and recalling metrics associated with physiological signals. It may be determined that the value of a monitored physiological metric corresponds to a stored value. In such cases, a patient monitor may determine that a calibration is not desired. In some cases, a patient monitor may recall calibration parameters associated with the stored value if it determined that the stored value corresponds to the monitored metric value.
    Type: Application
    Filed: March 21, 2016
    Publication date: July 14, 2016
    Inventors: Paul Stanley Addison, James N. Watson
  • Patent number: 9378332
    Abstract: Systems and methods for detecting the occurrence of events from a signal are provided. A signal processing system may analyze baseline changes and changes in signal characteristics to detect events from a signal. The system may also detect events by analyzing energy parameters and artifacts in a scalogram of the signal. Further, the system may detect events by analyzing both the signal and its corresponding scalogram.
    Type: Grant
    Filed: September 6, 2013
    Date of Patent: June 28, 2016
    Assignee: Nellcor Puritan Bennett Ireland
    Inventors: James Nicholas Watson, Paul Stanley Addison
  • Patent number: 9357937
    Abstract: A system for determining stroke volume of an individual. The system includes a skew-determining module that is configured to calculate a first derivative of photoplethysmogram (PPG) signals of the individual. The first derivative forms a derivative waveform. The skew-determining module is configured to determine a skew metric of the first derivative, wherein the skew metric is indicative of a morphology of at least one pulse wave detected from blood flow of the individual in the derivative waveform. The system also includes an analysis module that is configured to determine a stroke volume of the individual. The stroke volume is a function of the skew metric of the first derivative.
    Type: Grant
    Filed: September 6, 2012
    Date of Patent: June 7, 2016
    Assignee: Covidien LP
    Inventors: James Nicholas Watson, Paul Stanley Addison
  • Patent number: 9357934
    Abstract: Systems and methods are provided for storing event markers. The value of a monitored physiological metric may be monitored and compared to a reference value. A patient monitoring system may compute a difference between a monitored metric and a reference value, and compare the difference to a threshold value to determine whether a physiological event has occurred. Based on the determination, a patient monitoring system may store an event marker, trigger a response, update a metric value, or perform any other suitable function.
    Type: Grant
    Filed: December 1, 2010
    Date of Patent: June 7, 2016
    Assignee: Nellcor Puritan Bennett Ireland
    Inventors: James N. Watson, Paul Stanley Addison, Rakesh Sethi, Keith Manning
  • Patent number: 9357954
    Abstract: Methods and systems are provided that allow for the simultaneous calculation of pulse and regional blood oxygen saturation. An oximeter system that includes a sensor with a plurality of emitters and detectors may be used to calculate a pulse and/or regional blood oxygen saturation. A plurality of light signals may be emitted from light emitters. A first light signal may be received at a first light detector and a second light signal may be received at a second light detector. A pulse and/or regional blood oxygen saturation value may be calculated based on the received first and/or second light signals. The pulse and regional blood oxygen saturation values may be calculated substantially simultaneously. The calculated pulse and regional blood oxygen saturation values as well as other blood oxygen saturation values may be displayed simultaneously in a preconfigured portion of a display.
    Type: Grant
    Filed: November 15, 2013
    Date of Patent: June 7, 2016
    Assignee: Covidien LP
    Inventors: Youzhi Li, Bo Chen, Edward M. McKenna, Paul Stanley Addison
  • Patent number: 9352822
    Abstract: An airfoil includes at least one precured composite spar having a web and at least one flange integrated with an end of the web. A precured composite skin is attached to the spar by adhesive bonding the skin to the flange.
    Type: Grant
    Filed: May 30, 2012
    Date of Patent: May 31, 2016
    Assignee: THE BOEING COMPANY
    Inventor: Paul Stanley Nordman
  • Patent number: 9330832
    Abstract: Apparatus and method example embodiments provide an improved common mode rejection ratio in high frequency transformer baluns. According to an example embodiment of the invention, an apparatus comprises a first winding of at least one turn forming a primary coil, having first and second differential leads oriented in a first direction, the primary coil formed in a first conductive layer over a substrate and the first differential lead of the primary coil being grounded; and a second winding of at least one turn forming a secondary coil, having a third and fourth differential leads oriented in a second direction offset by an angle of greater than zero degrees and less than 180 degrees from the first direction, the secondary coil formed in a second conductive layer separated by an insulating layer from the first conductive layer.
    Type: Grant
    Filed: February 13, 2013
    Date of Patent: May 3, 2016
    Assignee: Nokia Technologies Oy
    Inventors: Paul Stanley Swirhun, Andrew Patrick Townley
  • Publication number: 20160106322
    Abstract: A PPG system for determining a stroke volume of a patient includes a PPG sensor configured to be secured to an anatomical portion of the patient. The PPG sensor is configured to sense a physiological characteristic of the patient. The PPG system may include a monitor operatively connected to the PPG sensor. The monitor receives a PPG signal from the PPG sensor. The monitor includes a pulse trending module determining a slope transit time of an upslope of a primary peak of the PPG signal. The pulse trending module determines a stroke volume of the patient as a function of the slope transit time.
    Type: Application
    Filed: December 21, 2015
    Publication date: April 21, 2016
    Inventors: Paul Stanley Addison, James Nicholas Watson
  • Patent number: 9314168
    Abstract: Techniques for detecting sleep events are disclosed. In some embodiments, a continuous non-invasive blood pressure (“CNIBP”) monitoring system may be used to obtain blood pressure values from a subject during a sleep study. Changes in the blood pressure over time may be determined and analyzed in order to identify a sleep event. The localized blood pressure changes may be interpreted in isolation or in combination with other signals collected from the subject.
    Type: Grant
    Filed: September 30, 2008
    Date of Patent: April 19, 2016
    Assignee: Nellcor Puritan Bennett Ireland
    Inventors: James Nicholas Watson, Rakesh Sethi, Paul Stanley Addison
  • Patent number: 9301697
    Abstract: Techniques for non-invasive blood pressure monitoring are disclosed. Data corresponding to a patient may be received from a hospital information system. The data may include, for example, drug administration data, medical procedure data, medical equipment data, or a combination thereof. Whether a blood pressure monitoring system needs to be recalibrated may be determined, based at least in part on the received data. If it is determined that the blood pressure monitoring system needs to be recalibrated, the recalibration may be performed and at least one blood pressure measurement of the patient may be computed using the recalibrated blood pressure monitoring system.
    Type: Grant
    Filed: September 30, 2008
    Date of Patent: April 5, 2016
    Assignee: Nellcor Puritan Bennett Ireland
    Inventors: Clark R. Baker, Jr., James Nicholas Watson, Paul Stanley Addison
  • Patent number: 9289136
    Abstract: Systems and methods are provided for storing and recalling metrics associated with physiological signals. It may be determined that the value of a monitored physiological metric corresponds to a stored value. In such cases, a patient monitor may determine that a calibration is not desired. In some cases, a patient monitor may recall calibration parameters associated with the stored value if it determined that the stored value corresponds to the monitored metric value.
    Type: Grant
    Filed: August 26, 2014
    Date of Patent: March 22, 2016
    Assignee: Nellcor Puritan Bennett Ireland
    Inventors: Paul Stanley Addison, James N. Watson
  • Publication number: 20160073965
    Abstract: Methods and systems are provided for determining fluid responsiveness based on a physiological signal. The system may determine fluid responsiveness based on the physiological signal and receive or determine respiration information of the subject. The system may correct the fluid responsiveness based on the respiration information. In some embodiments, the system may determine a correction factor to correct the fluid responsiveness values based on a relationship between fluid responsiveness and the respiration information. In some embodiments, the system may correct the measured fluid responsiveness based on an error between the fluid responsiveness measure and another measure such as pulse pressure variation, where there is a relationship between the error and the respiration information.
    Type: Application
    Filed: September 4, 2015
    Publication date: March 17, 2016
    Inventors: Paul Stanley Addison, Scott McGonigle, James Nicholas Watson, Rui Wang, Peter Doyle
  • Patent number: 9285461
    Abstract: Apparatus, method, and system example embodiments provide an improved integrated circuit RF front end to simultaneously transmit and receive signals for radar imaging. In an example embodiment, an apparatus comprises a transceiver coupled to a circularly polarized antenna assembly, capable of transmitting circularly polarized signals that are a component of a multi-signal radar beam; a power amplifier configured to amplify a transmit signal, coupled through isolation couplers to the circularly polarized antenna assembly; a phase shifting block circuit configured to perform phase shifting of a local oscillator signal, in response to the receipt of phase control signals, to perform phased-array beam steering of the multi-signal radar beam when the component circular signals are associated with signals transmitted from other transceivers receiving the phase control signals.
    Type: Grant
    Filed: March 12, 2013
    Date of Patent: March 15, 2016
    Assignee: Nokia Technologies Oy
    Inventors: Paul Stanley Swirhun, Andrew Patrick Townley
  • Publication number: 20160045154
    Abstract: Provided are systems and method for prediction and mitigation of apnea of a subject, based on measurements of various physiological parameters of the subject.
    Type: Application
    Filed: August 13, 2014
    Publication date: February 18, 2016
    Inventors: Paul Stanley Addison, Joshua Lewis Colman, Mark Golberg, Konstantin Goulitski
  • Patent number: 9259160
    Abstract: Systems and methods are provided for determining when to update a blood pressure measurement. The value of a physiological metric may be monitored and compared to a reference value. A patient monitoring system may compute a difference between a monitored metric and a reference value, and compare the difference to a threshold value to determine whether to update a blood pressure measurement. The threshold value may be constant or variable, and may depend on the monitored metric.
    Type: Grant
    Filed: December 1, 2010
    Date of Patent: February 16, 2016
    Assignee: Nellcor Puritan Bennett Ireland
    Inventors: James N. Watson, Paul Stanley Addison, Rakesh Sethi, Keith Manning
  • Patent number: 9259188
    Abstract: According to embodiments, systems and methods are provided for filtering a signal. A first reference signal may be generated according to a signal model and a second reference signal may be generated by analyzing a continuous wavelet transform of a signal. The first and second reference signals may then both be applied to an input signal to filter the input signal according to the components of both of the reference signals.
    Type: Grant
    Filed: July 31, 2012
    Date of Patent: February 16, 2016
    Assignee: Nellcor Puritan Bennett Ireland
    Inventors: James Nicholas Watson, Paul Stanley Addison
  • Publication number: 20160029922
    Abstract: A tubeless patient interface including a grasping member configured to grasp a patient's nose or tooth; and a miniature CO2 sensor attached to the grasping member and configured to measure the concentration of CO2 from a patient's breath flow.
    Type: Application
    Filed: July 31, 2014
    Publication date: February 4, 2016
    Inventors: Avner Bar-Lev, Alon Sasson, Paul Stanley Addison, Moshe Mandelbaum, Joshua Lewis Colman
  • Patent number: 9241646
    Abstract: A PPG system for determining a stroke volume of a patient includes a PPG sensor configured to be secured to an anatomical portion of the patient. The PPG sensor is configured to sense a physiological characteristic of the patient. The PPG system may include a monitor operatively connected to the PPG sensor. The monitor receives a PPG signal from the PPG sensor. The monitor includes a pulse trending module determining a slope transit time of an upslope of a primary peak of the PPG signal. The pulse trending module determines a stroke volume of the patient as a function of the slope transit time.
    Type: Grant
    Filed: September 11, 2012
    Date of Patent: January 26, 2016
    Assignee: Covidien LP
    Inventors: Paul Stanley Addison, James Nicholas Watson
  • Publication number: 20160015281
    Abstract: A combined physiological sensor and methods for detecting one or more physiological characteristics of a subject are provided. The combined sensor (e.g., a forehead sensor) may be used to detect and/or calculate at least one of a pulse blood oxygen saturation level, a regional blood oxygen saturation level, a respiration rate, blood pressure, an electrical physiological signal (EPS), a pulse transit time (PTT), body temperature associated with the subject, a depth of consciousness (DOC) measurement, any other suitable physiological parameter, and any suitable combination thereof. The combined sensor may include a variety of individual sensors, such as electrodes, optical detectors, optical emitters, temperature sensors, and/or other suitable sensors. The sensors may be advantageously positioned in accordance with a number of different geometries.
    Type: Application
    Filed: September 21, 2015
    Publication date: January 21, 2016
    Inventors: Edward M. McKenna, Bo Chen, Youzhi Li, Paul Stanley Addison