Patents by Inventor Paul Stephen DiMascio

Paul Stephen DiMascio has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190176220
    Abstract: A mold system for forming a casting article for investment casting in which the mechanical integrity of a ceramic core can be tested by viscosity manipulation. A method for testing a ceramic core used for an investment casting includes: positioning the ceramic core within a mold for receiving a sacrificial material fluid to form a sacrificial material on at least a portion of the ceramic core, the ceramic core having a predefined layout; during casting of the sacrificial material fluid about the ceramic core using the mold, controlling a viscosity of the sacrificial material fluid to simulate an expected viscosity of a molten metal used during a subsequent investment casting using the ceramic core; and evaluating mechanical damage to at least one region of the ceramic core caused by the casting of the sacrificial material fluid.
    Type: Application
    Filed: February 13, 2019
    Publication date: June 13, 2019
    Inventors: Jose Troitino Lopez, Paul Stephen DiMascio
  • Publication number: 20190105705
    Abstract: A mold system for forming a casting article for investment casting in which the mechanical integrity of a ceramic core can be tested by viscosity manipulation. A method for testing a ceramic core used for an investment casting includes: positioning the ceramic core within a mold for receiving a sacrificial material fluid to form a sacrificial material on at least a portion of the ceramic core, the ceramic core having a predefined layout; during casting of the sacrificial material fluid about the ceramic core using the mold, controlling a viscosity of the sacrificial material fluid to simulate an expected viscosity of a molten metal used during a subsequent investment casting using the ceramic core; and evaluating mechanical damage to at least one region of the ceramic core caused by the casting of the sacrificial material fluid.
    Type: Application
    Filed: October 10, 2017
    Publication date: April 11, 2019
    Inventors: Jose Troitino Lopez, Paul Stephen DiMascio
  • Patent number: 10252325
    Abstract: A mold system for forming a casting article for investment casting in which the mechanical integrity of a ceramic core can be tested by viscosity manipulation. A method for testing a ceramic core used for an investment casting includes: positioning the ceramic core within a mold for receiving a sacrificial material fluid to form a sacrificial material on at least a portion of the ceramic core, the ceramic core having a predefined layout; during casting of the sacrificial material fluid about the ceramic core using the mold, controlling a viscosity of the sacrificial material fluid to simulate an expected viscosity of a molten metal used during a subsequent investment casting using the ceramic core; and evaluating mechanical damage to at least one region of the ceramic core caused by the casting of the sacrificial material fluid.
    Type: Grant
    Filed: October 10, 2017
    Date of Patent: April 9, 2019
    Assignee: General Electric Company
    Inventors: Jose Troitino Lopez, Paul Stephen DiMascio
  • Publication number: 20190093596
    Abstract: A piston for an internal combustion engine with a piston crown and a circumferentially arranged crown edge, whereby, near the periphery of the crown edge, a thermal barrier coating is applied, whereby the thermal barrier coating tapers off before the periphery of the crown edge.
    Type: Application
    Filed: June 30, 2016
    Publication date: March 28, 2019
    Inventors: Paul Stephen DIMASCIO, Magdalena GACA, Piotr ZAJAC, Sebastian NIEDZIELA, Luke PEARSON
  • Publication number: 20180339354
    Abstract: Various aspects include a composite component (also known as a Shear Enabled Regionally Engineered Facet (SEREF)) and methods of forming such a component. In some cases, a method includes: forming a slot in a main body of a metal alloy component, the slot extending at least partially through a wall of the metal alloy component, the forming of the slot including forming an angled main body interface in the wall of the metal alloy component; forming a coupon for coupling with the slot in the metal alloy component, the coupon having an angled coupon interface complementing the angled main body interface; and brazing the coupon to the main body at the slot to form a composite component.
    Type: Application
    Filed: May 25, 2017
    Publication date: November 29, 2018
    Inventors: Cem Murat Eminoglu, Paul Stephen DiMascio
  • Publication number: 20180209782
    Abstract: Methods for monitoring component strain, and methods for making a component with an integral strain indicator. A method of making a component with an integral strain indicator includes forming the component with an internal volume formed from a first material and an outer surface and directly depositing a plurality of fiducial markers on a portion of the outer surface. The fiducial markers are formed from a second material that is compatible with the first material and the portion of the outer surface defines an analysis region on the outer surface of the component. The analysis region defines a gage length, and each fiducial marker of the plurality of fiducial markers has a maximum diameter of between one-tenth and one-twentieth of the gage length.
    Type: Application
    Filed: January 24, 2017
    Publication date: July 26, 2018
    Inventors: Gregory Lee Hovis, Lacey Lynn Schwab, William F. Ranson, Paul Stephen DiMascio
  • Patent number: 9995169
    Abstract: A process of forming a calcium-magnesium-aluminosilicate (CMAS) penetration resistant coating, and a CMAS penetration resistant coating are disclosed. The process includes providing a thermal barrier coating having a dopant, and exposing the thermal barrier coating to calcium-magnesium-aluminosilicate and gas turbine operating conditions. The exposing forming a calcium-magnesium-aluminosilicate penetration resistant layer. The coating includes a thermal barrier coating composition comprising a dopant selected from the group consisting of rare earth elements, non-rare earth element solutes, and combinations thereof. Additional or alternatively, the coating includes a thermal barrier coating and an impermeable barrier layer or a washable sacrificial layer positioned on an outer surface of the thermal barrier coating.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: June 12, 2018
    Assignee: General Electric Company
    Inventors: Jon Conrad Schaeffer, Surinder Singh Pabla, Paul Stephen Dimascio, Krishnamurthy Anand, Joshua Lee Margolies, Padmaja Parakala
  • Patent number: 9926791
    Abstract: A ceramic matrix composite article and a process of fabricating a ceramic matrix composite are disclosed. The ceramic matrix composite article includes a matrix distribution pattern formed by a manifold and ceramic matrix composite plies laid up on the matrix distribution pattern, includes the manifold, or a combination thereof. The manifold includes one or more matrix distribution channels operably connected to a delivery interface, the delivery interface configured for providing matrix material to one or more of the ceramic matrix composite plies. The process includes providing the manifold, forming the matrix distribution pattern by transporting the matrix material through the manifold, and contacting the ceramic matrix composite plies with the matrix material.
    Type: Grant
    Filed: December 4, 2015
    Date of Patent: March 27, 2018
    Assignee: General Electric Company
    Inventors: Ronald Ralph Cairo, Paul Stephen Dimascio, Jason Robert Parolini
  • Publication number: 20180027190
    Abstract: A system and method for thermal inspection of a component having at least one cooling hole is disclosed, that uses an evaporative membrane for direct evaporative cooling of an exhausted working fluid. A working fluid is supplied to at least one internal passage of a component that is configured to exhaust the working fluid from the internal passage sequentially through the cooling holes and the wetted evaporative membrane disposed in direct air-tight contact with the component. An imager captures a time series of images corresponding to a transient evaporative response of the exhausted working fluid to determine a plurality of temperature values for the exhausted working fluid after passage through the evaporative membrane. A processor circuit is configured to evaluate the transient evaporative response of the exhausted working fluid.
    Type: Application
    Filed: July 21, 2016
    Publication date: January 25, 2018
    Inventors: Dheepa Srinivasan, Joel John Bosco, Debabrata Mukhopadhyay, Paul Stephen DiMascio
  • Publication number: 20170322143
    Abstract: A corrosion monitoring system includes at least one corrosion sensor. The corrosion sensor includes a metallic plug having at least one opening, at least one ceramic sheath in the opening of the metallic plug, and a plurality of probes. Each probe has a central portion with a predetermined cross sectional area extending from the metallic plug. The ceramic sheath electrically isolates each first end and each second end of the probes from the metallic plug and the other first ends and second ends. The probes are sized to provide a distribution of predetermined cross sectional areas of the central portions. The corrosion monitoring system also includes a resistance meter measuring an ohmic resistance for at least one of the probes and a computer determining a corrosion rate by correlating a rate of change of the ohmic resistance to the corrosion rate of the probe.
    Type: Application
    Filed: May 9, 2016
    Publication date: November 9, 2017
    Inventors: Krishnamurthy ANAND, Paul Stephen DIMASCIO, Sundar AMANCHERLA, Rebecca E. HEFNER
  • Publication number: 20170253821
    Abstract: A gas turbine process includes supplying a fuel to a gas turbine, combusting the fuel in the gas turbine with a hot gas path temperature reaching at least 1100° C. during operation of the gas turbine, and supplying an inhibition composition including at least one yttrium-containing inorganic compound to interact with the vanadium and inhibit vanadium hot corrosion in the gas turbine caused by vanadium as a fuel impurity in the fuel. A process includes supplying an inhibition composition including at least one yttrium-containing inorganic compound to a hot gas path or a combustor of a gas turbine. A fuel composition includes a fuel including at least one fuel impurity including vanadium and an inhibition composition including at least one yttrium-containing compound. An atomic ratio of yttrium to vanadium in the fuel composition is in a range of 1 to 1.5.
    Type: Application
    Filed: March 2, 2016
    Publication date: September 7, 2017
    Inventors: Pierre MONTAGNE, Krishnamurthy ANAND, Prajina BHATTACHARYA, Paul Stephen DIMASCIO, Jeffrey Scott GOLDMEER, Abdurrahman Abdallah KHALIDI, Praveen Babulal JAIN, Adarsh SHUKLA, Eklavya CALLA, Paul Burchell GLASER
  • Patent number: 9719420
    Abstract: A process of producing a ceramic matrix composite gas turbine component and a ceramic matrix composite gas turbine component are provided. The process includes modifying a surface of the ceramic matrix composite gas turbine component to produce a modified surface with a surface roughness of less than 6 micrometers. The modifying is selected from the group of techniques consisting of applying unreinforced matrix plies to the surface, vapor depositing silicon on the surface, honing the surface, applying braze paste to the surface, and combinations thereof. The component includes a modified surface including a surface roughness of less than 6 micrometers. The modified surface being selected from the group consisting of unreinforced matrix plies applied to a surface of the ceramic matrix composite gas turbine component, silicon vapor deposited on the surface, a honed surface, a braze paste applied to the surface, and combinations thereof.
    Type: Grant
    Filed: June 2, 2014
    Date of Patent: August 1, 2017
    Assignee: General Electric Company
    Inventors: Paul Stephen DiMascio, Victor John Morgan, Jason Robert Parolini, Glenn Curtis Taxacher, Frederic Woodrow Roberts, Jr., Jacob John Kittleson, John McConnell Delvaux
  • Patent number: 9671030
    Abstract: A metallic seal assembly, a turbine component, and a method of regulating flow in turbo-machinery are disclosed. The metallic seal assembly includes a sealing structure having thermally-responsive features. The thermally-responsive features deploy from or retract toward a surface of the sealing structure in response to a predetermined temperature change. The turbine component includes the metallic seal assembly. The method of regulating flow in turbo-machinery includes providing the metallic seal assembly and raising or retracting the thermally-responsive features in response to the predetermined temperature change.
    Type: Grant
    Filed: November 30, 2012
    Date of Patent: June 6, 2017
    Assignee: General Electric Company
    Inventors: Paul Stephen Dimascio, Michael Douglas Arnett, Rebecca Evelyn Hefner, Christopher D. Higgins
  • Publication number: 20170087668
    Abstract: Laser cladding systems include a metal-filled wire comprising a metal shell surrounding a metal-filled core, wherein the metal-filled core comprises at least one of a powder metal or a fine wire metal, and, a laser that produces a laser beam directed onto at least a portion of a tip of the metal-filled wire to melt the metal shell and metal-filled core to produce a molten pool for depositing on a substrate.
    Type: Application
    Filed: December 13, 2016
    Publication date: March 30, 2017
    Applicant: General Electric Company
    Inventors: Dechao Lin, Paul Stephen DiMascio, David Vincent Bucci, Srikanth Chandrudu Kottilingam, Yan CUi
  • Patent number: 9587632
    Abstract: A thermally-controlled component and thermal control process are disclosed. The thermally-controlled component includes thermally-responsive features. The thermally-responsive features are configured to modify a flow path to control temperature variation of the thermally-controlled component. The thermally-responsive features deploy from or retract toward a surface of the thermally-controlled component in response to a predetermined temperature change. The thermal control process includes modifying the flow path in the thermally-controlled component to control temperature variation of the thermally-controlled component and/or cooling a region of the thermally-controlled component through the thermally-responsive features deploying from or retracting toward a surface of the thermally-controlled component.
    Type: Grant
    Filed: November 30, 2012
    Date of Patent: March 7, 2017
    Assignee: General Electric Company
    Inventors: Paul Stephen Dimascio, Michael Douglas Arnett, Rebecca Evelyn Hefner
  • Patent number: 9551058
    Abstract: Coating methods and a coated substrate are provided. The coating method includes providing a component having an aperture formed in a surface thereof, arranging and disposing a hollow member on a portion of the surface to define a hollow space above the aperture corresponding to a shape of the aperture at the surface, applying at least one coating over the surface of the component and the hollow member to form an applied coating having an applied coating thickness, and removing at least a portion of the hollow member to expose the hollow space through the applied coating. The coated substrate includes a component having an aperture formed in a surface thereof, a hollow member arranged and disposed on the surface to define a hollow space above the aperture, and an applied coating over the surface of the component, the hollow space being exposed through the applied coating.
    Type: Grant
    Filed: December 6, 2013
    Date of Patent: January 24, 2017
    Assignee: General Electric Company
    Inventors: Thomas Robert Reid, Paul Stephen Dimascio, Jonathan Matthew Lomas, Cem Murat Eminoglu
  • Publication number: 20170009328
    Abstract: Coating processes and coated components are disclosed. A coating process includes applying a suspension to an operationally-used surface, the suspension having one or more solvents, nano-materials, a plasticizer, a binder, and a dispersant suspending nano-materials within the suspension, applying heat to the suspension thereby removing liquids from the suspension, wherein solids are maintained on the surface after the applying of the heat, and sintering the solids on the surface to produce a coating. A coated component includes a substrate and a coating formed on the substrate by sintering of solids, the solids being positioned by application and heating of a suspension to an operationally-used surface, the suspension having one or more solvents, nano-materials, a plasticizer, a binder, and a dispersant suspending nano-materials within the suspension.
    Type: Application
    Filed: July 10, 2015
    Publication date: January 12, 2017
    Inventors: Bryan Joseph GERMANN, Paul Stephen DIMASCIO
  • Patent number: 9429510
    Abstract: A corrosion sensor for an internal structure of a machine is provided. The corrosion sensor may include a test cap having at least one of a material and a geometry configured to fail faster than a material of the internal structure due to a corrosive influence. A mount secures the test cap in position in an opening in a portion of the machine that defines an operational environment. A chamber is adjacent the test cap and in at least one of the test cap and the mount. A failure in the test cap creates an environmental change in the chamber that indicates exceeding a corrosion threshold and can be sensed by, for example, a temperature or pressure change.
    Type: Grant
    Filed: November 18, 2014
    Date of Patent: August 30, 2016
    Assignee: General Electric Company
    Inventors: Keith Cletus Belsom, Paul Stephen DiMascio
  • Patent number: 9348001
    Abstract: A system for locating at least one surface feature, such as a cooling aperture, on a turbine component is provided. The system includes at least one feature marker configured for placement adjacent to the at least one surface feature. The system also includes at least one sensor configured for non-visual detection of the at least one feature marker. The system also includes a control device coupled to the at least one sensor for receiving signals from the at least one sensor, wherein the signals represent data indicative of one of a presence of the at least one feature marker and an absence of the at least one feature marker.
    Type: Grant
    Filed: October 21, 2013
    Date of Patent: May 24, 2016
    Assignee: General Electric Company
    Inventors: Thomas Robert Reid, Paul Stephen Dimascio, Jonathan Matthew Lomas
  • Publication number: 20160139029
    Abstract: A corrosion sensor for an internal structure of a machine is provided. The corrosion sensor may include a test cap having at least one of a material and a geometry configured to fail faster than a material of the internal structure due to a corrosive influence. A mount secures the test cap in position in an opening in a portion of the machine that defines an operational environment. A chamber is adjacent the test cap and in at least one of the test cap and the mount. A failure in the test cap creates an environmental change in the chamber that indicates exceeding a corrosion threshold and can be sensed by, for example, a temperature or pressure change.
    Type: Application
    Filed: November 18, 2014
    Publication date: May 19, 2016
    Inventors: Keith Cletus Belsom, Paul Stephen DiMascio