Patents by Inventor Paul Thorup

Paul Thorup has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10665551
    Abstract: A trench-type metal-oxide-semiconductor field-effect transistor (MOSFET) device and a fabrication method are disclosed. A semiconductor substrate of a first conductivity type is provided. A plurality of first trenches arranged side by side in a first stripe layout extending along a first direction in a first preset area of the semiconductor substrate are formed. A plurality of second trenches arranged side by side in a second stripe layout extending along a second direction perpendicular to the first direction in a second preset area of the semiconductor substrate are formed. The plurality of first trenches and the plurality of second trenches are filled with a conductive material so as to form a plurality of control gates.
    Type: Grant
    Filed: June 21, 2018
    Date of Patent: May 26, 2020
    Assignee: ALPHA AND OMEGA SEMICONDUCTOR (CAYMAN) LTD.
    Inventors: Xiaobin Wang, Madhur Bobde, Paul Thorup
  • Patent number: 10424654
    Abstract: This invention discloses a semiconductor power device disposed in a semiconductor substrate including an active cell areas and a termination area. The semiconductor power device further comprises a plurality of gate trenches formed at a top portion of the semiconductor substrate in the active cell area wherein each of the gate trenches is partially filled with a conductive gate material with a top portion of the trenches filled by a high density plasma (HDP) insulation layer. The semiconductor power device further comprises mesa areas of the semiconductor substrate disposed between the gate trenches wherein the mesa areas are recessed and having a top mesa surface disposed vertically below a top surface of the HDP insulation layer wherein the HDP insulation layer covering over the conductive gate material constituting a stick-out boundary-defining layer surrounding the recessed mesa areas in the active cell areas between the gate trenches.
    Type: Grant
    Filed: June 27, 2018
    Date of Patent: September 24, 2019
    Assignee: Alpha and Omega Semiconductor Incorporated
    Inventors: Wenjun Li, Paul Thorup, Hong Chang, Yeeheng Lee, Yang Xiang, Jowei Dun, Hongyong Xue, Yiming Gu
  • Publication number: 20180323155
    Abstract: A trench-type metal-oxide-semiconductor field-effect transistor (MOSFET) device and a fabrication method are disclosed. A semiconductor substrate of a first conductivity type is provided. A plurality of first trenches arranged side by side in a first stripe layout extending along a first direction in a first preset area of the semiconductor substrate are formed. A plurality of second trenches arranged side by side in a second stripe layout extending along a second direction perpendicular to the first direction in a second preset area of the semiconductor substrate are formed. The plurality of first trenches and the plurality of second trenches are filled with a conductive material so as to form a plurality of control gates.
    Type: Application
    Filed: June 21, 2018
    Publication date: November 8, 2018
    Applicant: Alpha and Omega Semiconductor Incorporated
    Inventors: Xiaobin Wang, Madhur Bobde, Paul Thorup
  • Publication number: 20180323282
    Abstract: This invention discloses a semiconductor power device disposed in a semiconductor substrate including an active cell areas and a termination area. The semiconductor power device further comprises a plurality of gate trenches formed at a top portion of the semiconductor substrate in the active cell area wherein each of the gate trenches is partially filled with a conductive gate material with a top portion of the trenches filled by a high density plasma (HDP) insulation layer. The semiconductor power device further comprises mesa areas of the semiconductor substrate disposed between the gate trenches wherein the mesa areas are recessed and having a top mesa surface disposed vertically below a top surface of the HDP insulation layer wherein the HDP insulation layer covering over the conductive gate material constituting a stick-out boundary-defining layer surrounding the recessed mesa areas in the active cell areas between the gate trenches.
    Type: Application
    Filed: June 27, 2018
    Publication date: November 8, 2018
    Applicant: Alpha & Omega Semiconductor, Incorporated
    Inventors: Wenjun Li, Paul Thorup, Hong Chang, Yeeheng Lee, Yang Xiang, Jowei Dun, Hongyong Xue, Yiming Gu
  • Patent number: 10032728
    Abstract: A trench-type metal-oxide-semiconductor field-effect transistor (MOSFET) device and a fabrication method are disclosed. The trench MOSFET device comprises a semiconductor substrate of a first conductivity type. The semiconductor substrate has a plurality of first trenches arranged side by side in a first preset area of the semiconductor substrate extending along a first direction and a plurality of second trenches arranged side by side in a second preset area of the semiconductor substrate extending along a second direction perpendicular to the first direction. A control gate is formed in each of the pluralities of first and second trenches. A body region of a second conductivity type is formed at a top portion of the semiconductor substrate near sidewalls of the pluralities of first and second trenches. A source region of the first conductivity type is formed on a top portion of the body region.
    Type: Grant
    Filed: June 30, 2016
    Date of Patent: July 24, 2018
    Assignee: ALPHA AND OMEGA SEMICONDUCTOR INCORPORATED
    Inventors: Xiaobin Wang, Madhur Bobde, Paul Thorup
  • Patent number: 10020380
    Abstract: This invention discloses a semiconductor power device disposed in a semiconductor substrate including an active cell areas and a termination area. The semiconductor power device further comprises a plurality of gate trenches formed at a top portion of the semiconductor substrate in the active cell area wherein each of the gate trenches is partially filled with a conductive gate material with a top portion of the trenches filled by a high density plasma (HDP) insulation layer. The semiconductor power device further comprises mesa areas of the semiconductor substrate disposed between the gate trenches wherein the mesa areas are recessed and having a top mesa surface disposed vertically below a top surface of the HDP insulation layer wherein the HDP insulation layer covering over the conductive gate material constituting a stick-out boundary-defining layer surrounding the recessed mesa areas in the active cell areas between the gate trenches.
    Type: Grant
    Filed: January 23, 2015
    Date of Patent: July 10, 2018
    Assignee: Alpha and Omega Semiconductor Incorporated
    Inventors: Wenjun Li, Paul Thorup, Hong Chang, Yeeheng Lee, Yang Xiang, Jowei Dun, Hongyong Xue, Yiming Gu
  • Patent number: 9865694
    Abstract: A plurality of gate trenches is formed into a semiconductor substrate in an active cell region. One or more other trenches are formed in a different region. Each gate trench has a first conductive material in lower portions and a second conductive material in upper portions. In the gate trenches, a first insulating layer separates the first conductive material from the substrate, a second insulating layer separates the second conductive material from the substrate and a third insulating material separates the first and second conductive materials. The other trenches contain part of the first conductive material in a half-U shape in lower portions and part of the second conductive material in upper portions. In the other trenches, the third insulating layer separates the first and second conductive materials. The first insulating layer is thicker than the third insulating layer, and the third insulating layer is thicker than the second.
    Type: Grant
    Filed: January 23, 2017
    Date of Patent: January 9, 2018
    Assignee: ALPHA AND OMEGA SEMICONDUCTOR INCORPORATED
    Inventors: Yeeheng Lee, Lingpeng Guan, Hongyong Xue, Yiming Gu, Yang Xiang, Terence Huang, Sekar Ramamoorthy, Wenjun Li, Hong Chang, Madhur Bobde, Paul Thorup, Hamza Yilmaz
  • Publication number: 20180005959
    Abstract: A trench-type metal-oxide-semiconductor field-effect transistor (MOSFET) device and a fabrication method are disclosed. The trench MOSFET device comprises a semiconductor substrate of a first conductivity type. The semiconductor substrate has a plurality of first trenches arranged side by side in a first preset area of the semiconductor substrate extending along a first direction and a plurality of second trenches arranged side by side in a second preset area of the semiconductor substrate extending along a second direction perpendicular to the first direction. A control gate is formed in each of the pluralities of first and second trenches. A body region of a second conductivity type is formed at a top portion of the semiconductor substrate near sidewalls of the pluralities of first and second trenches. A source region of the first conductivity type is formed on a top portion of the body region.
    Type: Application
    Filed: June 30, 2016
    Publication date: January 4, 2018
    Applicant: Alpha and Omega Semiconductor Incorporated
    Inventors: Xiaobin Wang, Madhur Bobde, Paul Thorup
  • Patent number: 9741808
    Abstract: A plurality of gate trenches is formed into a semiconductor substrate in an active cell region. One or more other trenches are formed in a different region. Each gate trench has a first conductive material in lower portions and a second conductive material in upper portions. In the gate trenches, a first insulating layer separates the first conductive material from the substrate, a second insulating layer separates the second conductive material from the substrate and a third insulating material separates the first and second conductive materials. The other trenches contain part of the first conductive material in a half-U shape in lower portions and part of the second conductive material in upper portions. In the other trenches, the third insulating layer separates the first and second conductive materials. The first insulating layer is thicker than the third insulating layer, and the third insulating layer is thicker than the second.
    Type: Grant
    Filed: March 4, 2016
    Date of Patent: August 22, 2017
    Assignee: Alpha and Omage Semiconductor Inc.
    Inventors: Yeeheng Lee, Lingpeng Guan, Hongyong Xue, Yiming Gu, Yang Xiang, Terence Huang, Sekar Ramamoorthy, Wenjun Li, Hong Chang, Madhur Bobde, Paul Thorup, Hamza Yilmaz
  • Publication number: 20170133473
    Abstract: A plurality of gate trenches is formed into a semiconductor substrate in an active cell region. One or more other trenches are formed in a different region. Each gate trench has a first conductive material in lower portions and a second conductive material in upper portions. In the gate trenches, a first insulating layer separates the first conductive material from the substrate, a second insulating layer separates the second conductive material from the substrate and a third insulating material separates the first and second conductive materials. The other trenches contain part of the first conductive material in a half-U shape in lower portions and part of the second conductive material in upper portions. In the other trenches, the third insulating layer separates the first and second conductive materials. The first insulating layer is thicker than the third insulating layer, and the third insulating layer is thicker than the second.
    Type: Application
    Filed: January 23, 2017
    Publication date: May 11, 2017
    Inventors: Yeeheng Lee, Lingpeng Guan, Hongyong Xue, Yiming Gu, Yang Xiang, Terence Huang, Sekar Ramamoorthy, Wenjun Li, Hong Chang, Madhur Bobde, Paul Thorup, Hamza Yilmaz
  • Publication number: 20160218008
    Abstract: This invention discloses a semiconductor power device disposed in a semiconductor substrate including an active cell areas and a termination area. The semiconductor power device further comprises a plurality of gate trenches formed at a top portion of the semiconductor substrate in the active cell area wherein each of the gate trenches is partially filled with a conductive gate material with a top portion of the trenches filled by a high density plasma (HDP) insulation layer. The semiconductor power device further comprises mesa areas of the semiconductor substrate disposed between the gate trenches wherein the mesa areas are recessed and having a top mesa surface disposed vertically below a top surface of the HDP insulation layer wherein the HDP insulation layer covering over the conductive gate material constituting a stick-out boundary-defining layer surrounding the recessed mesa areas in the active cell areas between the gate trenches.
    Type: Application
    Filed: January 23, 2015
    Publication date: July 28, 2016
    Applicant: Alpha & Omega Semiconductor, Incorporated
    Inventors: Wenjun Li, Paul Thorup, Hong Chang, Yeeheng Lee, Yang Xiang, Jowei Dun, Hongyong Xue, Yiming Gu
  • Publication number: 20160190265
    Abstract: A plurality of gate trenches is formed into a semiconductor substrate in an active cell region. One or more other trenches are formed in a different region. Each gate trench has a first conductive material in lower portions and a second conductive material in upper portions. In the gate trenches, a first insulating layer separates the first conductive material from the substrate, a second insulating layer separates the second conductive material from the substrate and a third insulating material separates the first and second conductive materials. The other trenches contain part of the first conductive material in a half-U shape in lower portions and part of the second conductive material in upper portions. In the other trenches, the third insulating layer separates the first and second conductive materials. The first insulating layer is thicker than the third insulating layer, and the third insulating layer is thicker than the second.
    Type: Application
    Filed: March 4, 2016
    Publication date: June 30, 2016
    Inventors: Yeeheng Lee, Lingpeng Guan, Hongyong Xue, Yiming Gu, Yang Xiang, Terence Huang, Sekar Ramamoorthy, Wenjun Li, Hong Chang, Madhur Bobde, Paul Thorup, Hamza Yilmaz
  • Patent number: 9281368
    Abstract: A plurality of gate trenches is formed into a semiconductor substrate in an active cell region. One or more other trenches are formed in a different region. Each gate trench has a first conductive material in lower portions and a second conductive material in upper portions. In the gate trenches, a first insulating layer separates the first conductive material from the substrate, a second insulating layer separates the second conductive material from the substrate and a third insulating material separates the first and second conductive materials. The other trenches contain part of the first conductive material in a half-U shape in lower portions and part of the second conductive material in upper portions. In the other trenches, the third insulating layer separates the first and second conductive materials. The first insulating layer is thicker than the third insulating layer, and the third insulating layer is thicker than the second.
    Type: Grant
    Filed: December 12, 2014
    Date of Patent: March 8, 2016
    Assignee: Alpha and Omega Semiconductor Incorporated
    Inventors: Yeeheng Lee, Lingpeng Guan, Hongyong Xue, Yiming Gu, Yang Xiang, Terence Huang, Sekar Ramamoorthy, Wenjun Li, Hong Chang, Madhur Bobde, Paul Thorup, Hamza Yilmaz
  • Publication number: 20140203355
    Abstract: In accordance with an embodiment a structure can include a monolithically integrated trench field-effect transistor (FET) and Schottky diode. The structure can include a first gate trench extending into a semiconductor region, a second gate trench extending into the semiconductor region, and a source region flanking a side of the first gate trench. The source region can have a substantially triangular shape, and a contact opening extending into the semiconductor region between the first gate trench and the second gate trench. The structure can include a conductor layer disposed in the contact opening to electrically contact the source region along at least a portion of a slanted sidewall of the source region, and the semiconductor region along a bottom portion of the contact opening. The conductor layer can form a Schottky contact with the semiconductor region.
    Type: Application
    Filed: March 24, 2014
    Publication date: July 24, 2014
    Applicant: Fairchild Semiconductor Corporation
    Inventors: Christopher Boguslaw Kocon, Steven Sapp, Paul Thorup, Dean Probst, Robert Herrick, Becky Losee, Hamza Yilmaz, Christopher Lawrence Rexer, Daniel Calafut
  • Patent number: 8686493
    Abstract: A semiconductor structure includes a monolithically integrated trench FET and Schottky diode. The semiconductor structure further includes a plurality of trenches extending into a semiconductor region. A stack of gate and shield electrodes are disposed in each trench. Body regions extend over the semiconductor region between adjacent trenches, with a source region extending over each body region. A recess having tapered edges extends between every two adjacent trenches from upper corners of the two adjacent trenches through the body region and terminating in the semiconductor region below the body region. An interconnect layer extends into each recess to electrically contact tapered sidewalls of the source regions and the body regions, and to contact the semiconductor region along a bottom of each recess to form a Schottky contact therebetween.
    Type: Grant
    Filed: September 30, 2008
    Date of Patent: April 1, 2014
    Assignee: Fairchild Semiconductor Corporation
    Inventors: Paul Thorup, Christopher Lawrence Rexer
  • Patent number: 8680611
    Abstract: In accordance with an embodiment a structure can include a monolithically integrated trench field-effect transistor (FET) and Schottky diode. The structure can include a first gate trench extending into a semiconductor region, a second gate trench extending into the semiconductor region, and a source region flanking a side of the first gate trench. The source region can have a substantially triangular shape, and a contact opening extending into the semiconductor region between the first gate trench and the second gate trench. The structure can include a conductor layer disposed in the contact opening to electrically contact the source region along at least a portion of a slanted sidewall of the source region, and the semiconductor region along a bottom portion of the contact opening. The conductor layer can form a Schottky contact with the semiconductor region.
    Type: Grant
    Filed: August 30, 2012
    Date of Patent: March 25, 2014
    Assignee: Fairchild Semiconductor Corporation
    Inventors: Christopher Boguslaw Kocon, Steven Sapp, Paul Thorup, Dean Probst, Robert Herrick, Becky Losee, Hamza Yilmaz, Christopher Lawrence Rexer, Daniel Calafut
  • Patent number: 8338285
    Abstract: A semiconductor structure is formed as follows. Trenches are formed in a semiconductor region and a shield electrode is formed in each trench. Gate electrodes are formed in a portion of the trenches that form an active region. Each gate electrode is disposed over the shield electrode and is isolated from the shield electrode by an inter-electrode dielectric. An interconnect layer is formed extending over the trenches. The interconnect layer is isolated from the gate electrodes in the active region by a dielectric layer and contacts the shield electrodes in a shield contact region separate from the active region. The interconnect layer contacts mesa surfaces between adjacent trenches in the shield contact region.
    Type: Grant
    Filed: May 9, 2011
    Date of Patent: December 25, 2012
    Assignee: Fairchild Semiconductor Corporation
    Inventors: Dixie Dunn, Paul Thorup, Dean E. Probst, Michael D. Gruenhagen
  • Publication number: 20120319197
    Abstract: In accordance with an embodiment a structure can include a monolithically integrated trench field-effect transistor (FET) and Schottky diode. The structure can include a first gate trench extending into a semiconductor region, a second gate trench extending into the semiconductor region, and a source region flanking a side of the first gate trench. The source region can have a substantially triangular shape, and a contact opening extending into the semiconductor region between the first gate trench and the second gate trench. The structure can include a conductor layer disposed in the contact opening to electrically contact the source region along at least a portion of a slanted sidewall of the source region, and the semiconductor region along a bottom portion of the contact opening. The conductor layer can form a Schottky contact with the semiconductor region.
    Type: Application
    Filed: August 30, 2012
    Publication date: December 20, 2012
    Inventors: Christopher Boguslaw Kocon, Steven Sapp, Paul Thorup, Dean Probst, Robert Herrick, Becky Losee, Hamza Yilmaz, Christopher Lawrence Rexer, Daniel Calafut
  • Publication number: 20120156845
    Abstract: A method for forming a field effect transistor and Schottky diode includes forming a well region in a first portion of a silicon region where the field effect transistor is to be formed but not in a second portion of the silicon region where the Schottky diode is to be formed. Gate trenches are formed extending into the silicon region. A recessed gate is formed in each gate trench. A dielectric cap is formed over each recessed gate. Exposed surfaces of the well region are recessed to form a recess between every two adjacent trenches. Without masking any portion of the active area, a zero-degree blanket implant is performed to form a heavy body region of the second conductivity type in the well region between every two adjacent trenches.
    Type: Application
    Filed: December 13, 2011
    Publication date: June 21, 2012
    Applicant: Fairchild Semiconductor Corporation
    Inventors: Christopher Boguslaw Kocon, Steven Sapp, Paul Thorup, Dean Probst, Robert Herrick, Becky Losee, Hamza Yilmaz, Christopher Lawrence Rexer, Daniel Calafut
  • Publication number: 20110275208
    Abstract: A semiconductor structure is formed as follows. Trenches are formed in a semiconductor region and a shield electrode is formed in each trench. Gate electrodes are formed in a portion of the trenches that form an active region. Each gate electrode is disposed over the shield electrode and is isolated from the shield electrode by an inter-electrode dielectric. An interconnect layer is formed extending over the trenches. The interconnect layer is isolated from the gate electrodes in the active region by a dielectric layer and contacts the shield electrodes in a shield contact region separate from the active region. The interconnect layer contacts mesa surfaces between adjacent trenches in the shield contact region.
    Type: Application
    Filed: May 9, 2011
    Publication date: November 10, 2011
    Applicant: Fairchild Semiconductor Corporation
    Inventors: Dixie Dunn, Paul Thorup, Dean E. Probst, Michael D. Gruenhagen